We construct uncountably many infinite characters of type II for , .
Revised:
Accepted:
Published online:
Mots-clés : Characters on groups
Rémi Boutonnet 1
@article{CML_2022__14_1_23_0, author = {R\'emi Boutonnet}, title = {Infinite characters of type {II} on $\protect \mathrm{SL}_n(\protect \mathbb{Z})$}, journal = {Confluentes Mathematici}, pages = {23--33}, publisher = {Institut Camille Jordan}, volume = {14}, number = {1}, year = {2022}, doi = {10.5802/cml.80}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.80/} }
TY - JOUR AU - Rémi Boutonnet TI - Infinite characters of type II on $\protect \mathrm{SL}_n(\protect \mathbb{Z})$ JO - Confluentes Mathematici PY - 2022 SP - 23 EP - 33 VL - 14 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.80/ DO - 10.5802/cml.80 LA - en ID - CML_2022__14_1_23_0 ER -
%0 Journal Article %A Rémi Boutonnet %T Infinite characters of type II on $\protect \mathrm{SL}_n(\protect \mathbb{Z})$ %J Confluentes Mathematici %D 2022 %P 23-33 %V 14 %N 1 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.80/ %R 10.5802/cml.80 %G en %F CML_2022__14_1_23_0
Rémi Boutonnet. Infinite characters of type II on $\protect \mathrm{SL}_n(\protect \mathbb{Z})$. Confluentes Mathematici, Volume 14 (2022) no. 1, pp. 23-33. doi : 10.5802/cml.80. https://cml.centre-mersenne.org/articles/10.5802/cml.80/
[1] U. Bader, R. Boutonnet, C. Houdayer, J. Peterson, Charmenability of Arithmetic groups of product type. Preprint 2020, arXiv:2009.09952.
[2] B. Bekka, Operator-algebraic superridigity for , . Invent. Math. 169 (2007), 401–425. | DOI | MR | Zbl
[3] B. Bekka, Infinite characters on , on , and on groups acting on trees, Preprint 2018, arXiv:1806.10110.
[4] B. Bekka, P. de la Harpe, Unitary representations of groups, duals, and characters. Mathematical Surveys and Monographs, 250. American Mathematical Society, Providence, RI, 2020. xi+474 pp. | DOI | Zbl
[5] B. Bekka, M. Kalantar, Quasi-regular representations of discrete groups and associated -algebras. arXiv:1903.00202
[6] R. Boutonnet, C. Houdayer, Stationary characters on lattices of semisimple Lie groups. arXiv:1908.07812
[7] K. Juschenko, N. Monod, Cantor systems, piecewise translations and simple amenable groups. Ann. of Math. (2) 178 (2013), no. 2, 775–787. | DOI | MR | Zbl
[8] G.W. Mackey, Induced representations of locally compact groups. I. Ann. of Math. (2) 55 (1952), 101–139. | DOI | MR | Zbl
[9] J. Peterson, Character rigidity for lattices in higher-rank groups. Preprint 2014.
[10] J. Rosenberg. Un complément à un théorème de Kirillov sur les caractères de d’un corps infini discret. C.R. Acad. Sci. Paris 309 (1989), Série I, 581–586. | Zbl
Cited by Sources: