A new line-symmetric mobile infinity-pod
Confluentes Mathematici, Volume 14 (2022) no. 1, pp. 35-47.

We construct parallel manipulators with one degree of freedom and admitting infinitely many legs lying on a curve of degree ten and genus six. Our technique relies upon a duality between the spaces parametrizing all the possible legs and all the possible configurations of a manipulator. Before describing our construction, we show how this duality helps explaining several known phenomena regarding mobility of parallel manipulators.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/cml.81
Classification: 14L35,  70B15
Keywords: infinity pods, self motions, kinematics
Matteo Gallet 1; Josef Schicho 2

1 Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences, Altenbergerstraße 69, 4040 Linz, Austria
2 Research Institute for Symbolic Computation (RISC), Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CML_2022__14_1_35_0,
     author = {Matteo Gallet and Josef Schicho},
     title = {A new line-symmetric mobile infinity-pod},
     journal = {Confluentes Mathematici},
     pages = {35--47},
     publisher = {Institut Camille Jordan},
     volume = {14},
     number = {1},
     year = {2022},
     doi = {10.5802/cml.81},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.81/}
}
TY  - JOUR
AU  - Matteo Gallet
AU  - Josef Schicho
TI  - A new line-symmetric mobile infinity-pod
JO  - Confluentes Mathematici
PY  - 2022
DA  - 2022///
SP  - 35
EP  - 47
VL  - 14
IS  - 1
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.81/
UR  - https://doi.org/10.5802/cml.81
DO  - 10.5802/cml.81
LA  - en
ID  - CML_2022__14_1_35_0
ER  - 
%0 Journal Article
%A Matteo Gallet
%A Josef Schicho
%T A new line-symmetric mobile infinity-pod
%J Confluentes Mathematici
%D 2022
%P 35-47
%V 14
%N 1
%I Institut Camille Jordan
%U https://doi.org/10.5802/cml.81
%R 10.5802/cml.81
%G en
%F CML_2022__14_1_35_0
Matteo Gallet; Josef Schicho. A new line-symmetric mobile infinity-pod. Confluentes Mathematici, Volume 14 (2022) no. 1, pp. 35-47. doi : 10.5802/cml.81. https://cml.centre-mersenne.org/articles/10.5802/cml.81/

[1] Émile Borel Mémoire sur les déplacements à trajectories sphériques, Mém. Sav. Étr. 33, Nr. 1, 128 S., 1908 | Zbl

[2] Raoul Bricard Mémoire sur les déplacements à trajectoires sphériques, J. de l’Éc. Pol. (2) 11, 1-93, 1906 | Zbl

[3] Ernest Duporcq Sur la correspondance quadratique et rationnelle de deux figures planes et sur un déplacement remarquable, C. R. Acad. Sci., Paris, Volume 126 (1898), pp. 1405-1406 (Available at https://gallica.bnf.fr/ark:/12148/bpt6k3082d.f1405) | Zbl

[4] Matteo Gallet; Georg Nawratil; Josef Schicho Bond theory for pentapods and hexapods, J. Geom., Volume 106 (2015) no. 2, pp. 211-228 | DOI | MR | Zbl

[5] Matteo Gallet; Georg Nawratil; Josef Schicho; Jon M. Selig Mobile icosapods, Adv. Appl. Math., Volume 88 (2017), pp. 1-25 | DOI | MR | Zbl

[6] Hans-Christian Graf von Bothmer; Matteo Gallet; Josef Schicho Hexapods with a small linear span (2020) | arXiv

[7] Daniel R. Grayson; Michael E. Stillman Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/

[8] Manfred Husty; Adolf Karger Self motions of the Stewart-Gough platforms. An overview, Proceedings of the workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators. Quebec City, Quebec, Canada (Clement M. Gosselin; Imme Ebert-Uphoff, eds.), 2002

[9] Manfred Husty; Sonja Mielczarek; Manfred Hiller A Redundant Spatial Stewart-Gough Platform with a Maximal Forward Kinematics Solution Set, Advances in Robot Kinematics: Theory and Applications (J. Lenarčič; F. Thomas, eds.), Springer Netherlands, Dordrecht, 2002, pp. 147-154 | DOI

[10] Adolf Karger New Self-Motions of Parallel Manipulators, Advances in Robot Kinematics – Analysis and Design (2008), pp. 275-282 | DOI | MR

[11] Adolf Karger Self-motions of Stewart-Gough platforms, Comput. Aided Geom. Des., Volume 25 (2008) no. 9, pp. 775-783 | DOI | MR | Zbl

[12] Adolf Karger; Manfred Husty Classification of all self-motions of the original Stewart-Gough platform, Comput.-Aided Des., Volume 30 (1998) no. 3, pp. 205-215 | DOI | Zbl

[13] Josef Krames Die Borel-Bricard-Bewegung mit punktweise gekoppelten orthogonalen Hyperboloiden. (Über symmetrische Schrotungen VI), Monatsh. Math. Phys., Volume 46 (1937), pp. 172-195 | DOI | Zbl

[14] Bernard Mourrain Enumeration problems in geometry, robotics and vision, Algorithms in algebraic geometry and applications. Proceedings of the MEGA-94 conference, Santander, Spain, April 5-9, 1994, Basel: Birkhäuser, 1996, pp. 285-306 | DOI | Zbl

[15] Georg Nawratil Planar Stewart Gough platforms with a type II DM self-motion, J. Geom., Volume 102 (2011) no. 1-2, pp. 149-169 | DOI | MR | Zbl

[16] Georg Nawratil Types of self-motions of planar Stewart Gough platforms, Meccanica, Volume 48 (2013) no. 5, pp. 1177-1190 | DOI | MR | Zbl

[17] Georg Nawratil Correcting Duporcq’s theorem, Mechanism and Machine Theory, Volume 73 (2014), pp. 282-295 | DOI

[18] Georg Nawratil On the Line-Symmetry of Self-motions of Linear Pentapods, Advances in Robot Kinematics 2016 (Jadran Lenarčič; Jean-Pierre Merlet, eds.), Springer International Publishing, Cham, 2018, pp. 149-159 | DOI | MR

[19] John Christian Ottem; Kristian Ranestad; Bernd Sturmfels; Cynthia Vinzant Quartic spectrahedra, Math. Program., Volume 151 (2015) no. 2 (B), pp. 585-612 | DOI | MR | Zbl

[20] Josef Schicho And yet it moves: paradoxically moving linkages in kinematics, Bull. Am. Math. Soc., New Ser., Volume 59 (2022) no. 1, pp. 59-95 | DOI | MR | Zbl

[21] Jon M. Selig 10. The Study Quadric, Geometrical Methods in Robotics (1996) | DOI

Cited by Sources: