We construct parallel manipulators with one degree of freedom and admitting infinitely many legs lying on a curve of degree ten and genus six. Our technique relies upon a duality between the spaces parametrizing all the possible legs and all the possible configurations of a manipulator. Before describing our construction, we show how this duality helps explaining several known phenomena regarding mobility of parallel manipulators.
Revised:
Accepted:
Published online:
Mots-clés : infinity pods, self motions, kinematics
Matteo Gallet 1; Josef Schicho 2
@article{CML_2022__14_1_35_0, author = {Matteo Gallet and Josef Schicho}, title = {A new line-symmetric mobile infinity-pod}, journal = {Confluentes Mathematici}, pages = {35--47}, publisher = {Institut Camille Jordan}, volume = {14}, number = {1}, year = {2022}, doi = {10.5802/cml.81}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.81/} }
TY - JOUR AU - Matteo Gallet AU - Josef Schicho TI - A new line-symmetric mobile infinity-pod JO - Confluentes Mathematici PY - 2022 SP - 35 EP - 47 VL - 14 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.81/ DO - 10.5802/cml.81 LA - en ID - CML_2022__14_1_35_0 ER -
Matteo Gallet; Josef Schicho. A new line-symmetric mobile infinity-pod. Confluentes Mathematici, Volume 14 (2022) no. 1, pp. 35-47. doi : 10.5802/cml.81. https://cml.centre-mersenne.org/articles/10.5802/cml.81/
[1] Mémoire sur les déplacements à trajectories sphériques, Mém. Sav. Étr. 33, Nr. 1, 128 S., 1908 | Zbl
[2] Mémoire sur les déplacements à trajectoires sphériques, J. de l’Éc. Pol. (2) 11, 1-93, 1906 | Zbl
[3] Sur la correspondance quadratique et rationnelle de deux figures planes et sur un déplacement remarquable, C. R. Acad. Sci., Paris, Volume 126 (1898), pp. 1405-1406 (Available at https://gallica.bnf.fr/ark:/12148/bpt6k3082d.f1405) | Zbl
[4] Bond theory for pentapods and hexapods, J. Geom., Volume 106 (2015) no. 2, pp. 211-228 | DOI | MR | Zbl
[5] Mobile icosapods, Adv. Appl. Math., Volume 88 (2017), pp. 1-25 | DOI | MR | Zbl
[6] Hexapods with a small linear span (2020) | arXiv
[7] Macaulay2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/
[8] Self motions of the Stewart-Gough platforms. An overview, Proceedings of the workshop on Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators. Quebec City, Quebec, Canada (Clement M. Gosselin; Imme Ebert-Uphoff, eds.), 2002
[9] A Redundant Spatial Stewart-Gough Platform with a Maximal Forward Kinematics Solution Set, Advances in Robot Kinematics: Theory and Applications (J. Lenarčič; F. Thomas, eds.), Springer Netherlands, Dordrecht, 2002, pp. 147-154 | DOI
[10] New Self-Motions of Parallel Manipulators, Advances in Robot Kinematics – Analysis and Design (2008), pp. 275-282 | DOI | MR
[11] Self-motions of Stewart-Gough platforms, Comput. Aided Geom. Des., Volume 25 (2008) no. 9, pp. 775-783 | DOI | MR | Zbl
[12] Classification of all self-motions of the original Stewart-Gough platform, Comput.-Aided Des., Volume 30 (1998) no. 3, pp. 205-215 | DOI | Zbl
[13] Die Borel-Bricard-Bewegung mit punktweise gekoppelten orthogonalen Hyperboloiden. (Über symmetrische Schrotungen VI), Monatsh. Math. Phys., Volume 46 (1937), pp. 172-195 | DOI | Zbl
[14] Enumeration problems in geometry, robotics and vision, Algorithms in algebraic geometry and applications. Proceedings of the MEGA-94 conference, Santander, Spain, April 5-9, 1994, Basel: Birkhäuser, 1996, pp. 285-306 | DOI | Zbl
[15] Planar Stewart Gough platforms with a type II DM self-motion, J. Geom., Volume 102 (2011) no. 1-2, pp. 149-169 | DOI | MR | Zbl
[16] Types of self-motions of planar Stewart Gough platforms, Meccanica, Volume 48 (2013) no. 5, pp. 1177-1190 | DOI | MR | Zbl
[17] Correcting Duporcq’s theorem, Mechanism and Machine Theory, Volume 73 (2014), pp. 282-295 | DOI
[18] On the Line-Symmetry of Self-motions of Linear Pentapods, Advances in Robot Kinematics 2016 (Jadran Lenarčič; Jean-Pierre Merlet, eds.), Springer International Publishing, Cham, 2018, pp. 149-159 | DOI | MR
[19] Quartic spectrahedra, Math. Program., Volume 151 (2015) no. 2 (B), pp. 585-612 | DOI | MR | Zbl
[20] And yet it moves: paradoxically moving linkages in kinematics, Bull. Am. Math. Soc., New Ser., Volume 59 (2022) no. 1, pp. 59-95 | DOI | MR | Zbl
[21] 10. The Study Quadric, Geometrical Methods in Robotics (1996) | DOI
Cited by Sources: