Lehmer’s famous problem asks whether the set of Mahler measures of polynomials with integer coefficients admits a gap at . In 2019, Lück extended this question to Fuglede-Kadison determinants of a general group, and he defined the Lehmer’s constants of the group to measure such a gap.
In this paper, we compute new values for Fuglede-Kadison determinants over non-cyclic free groups, which yields the new upper bound for Lehmer’s constants of all torsion-free groups which have non-cyclic free subgroups.
Our proofs use relations between Fuglede-Kadison determinants and random walks on Cayley graphs, as well as works of Bartholdi and Dasbach-Lalin.
Furthermore, via the gluing formula for -torsions, we show that the Lehmer’s constants of an infinite number of fundamental groups of hyperbolic 3-manifolds are bounded above by even smaller values than .
Revised:
Accepted:
Published online:
Keywords: $L^2$-invariants; braid groups; Fuglede-Kadison determinant; Lehmer’s constants
Fathi Ben Aribi 1
@article{CML_2022__14_1_3_0, author = {Fathi Ben Aribi}, title = {Fuglede-Kadison determinants over free groups and {Lehmer{\textquoteright}s} constants}, journal = {Confluentes Mathematici}, pages = {3--22}, publisher = {Institut Camille Jordan}, volume = {14}, number = {1}, year = {2022}, doi = {10.5802/cml.79}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.79/} }
TY - JOUR AU - Fathi Ben Aribi TI - Fuglede-Kadison determinants over free groups and Lehmer’s constants JO - Confluentes Mathematici PY - 2022 SP - 3 EP - 22 VL - 14 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.79/ DO - 10.5802/cml.79 LA - en ID - CML_2022__14_1_3_0 ER -
Fathi Ben Aribi. Fuglede-Kadison determinants over free groups and Lehmer’s constants. Confluentes Mathematici, Volume 14 (2022) no. 1, pp. 3-22. doi : 10.5802/cml.79. https://cml.centre-mersenne.org/articles/10.5802/cml.79/
[1] M. Aschenbrenner, S. Friedl and H. Wilton. -manifold groups, EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), xiv+215 pp., Zürich, 2015. | DOI | MR | Zbl
[2] L. Bartholdi. Counting paths in graphs, Enseign. Math. (2) 45, no. 1-2, 83–131, 1999. | Zbl
[3] F. Ben Aribi. A study of properties and computation techniques of the -Alexander invariant in knot theory, PhD thesis, Université Paris Diderot, Paris, 2015.
[4] F. Ben Aribi. Gluing formulas for the -Alexander torsions, Commun. Contemp. Math. 21, no. 3, 1850013, 31 pp., 2019. | DOI | Zbl
[5] F. Ben Aribi and A. Conway. -Burau maps and -Alexander torsions, Osaka J. Math. 55, 529–545, 2018. | Zbl
[6] D. Boyd. Speculations concerning the range of Mahler’s measure, Canad. Math. Bull. 24, no. 4, 453–469, 1981. | DOI | MR | Zbl
[7] M. R. Bridson, D. B. McReynolds, A. W. Reid, R. Spitler. Absolute profinite rigidity and hyperbolic geometry, Ann. of Math. (2) 192, no. 3, 679–719, 2020. | DOI | MR | Zbl
[8] W. Burau. Über Zopfgruppen und gleichsinnig verdrillte Verkettungen, Abh. Math. Sem. Univ. Hamburg 11, 179–186, 1935. | DOI | Zbl
[9] Marc Culler, Nathan M. Dunfield, Matthias Goerner, and Jeffrey R. Weeks. SnapPy, a computer program for studying the geometry and topology of 3-manifolds, available at http://snappy. computop.org
[10] O. Dasbach and M. Lalin. Mahler measure under variations of the base group, Forum Math. 21, no. 4, 621–637, 2009. | DOI | MR | Zbl
[11] J. Dubois, S. Friedl and W. Lück. The -Alexander torsion of 3-manifolds, Journal of Topology 9, No. 3, 889–926, 2016. | DOI | Zbl
[12] R.H. Fox. Free differential calculus. II. The isomorphism problem of groups, Ann. of Math. (2), 59, 196–210, 1954. | DOI | MR | Zbl
[13] D. Gabai, R. Meyerhoff and P. Milley. Minimum volume cusped hyperbolic three-manifolds, J. Amer. Math. Soc. 22(4), 1157–1215, 2009. | DOI | MR | Zbl
[14] A. Kricker and Z. Wong. Random Walks on Graphs and Approximation of -Invariants, Acta Mathematica Vietnamica, Volume 46, Issue 2, pp. 309–319, March 2021. | DOI | Zbl
[15] W. Li and W. Zhang. An -Alexander invariant for knots, Commun. Contemp. Math. 8, no. 2, 167–187, 2006. | DOI | Zbl
[16] Y. Liu. Degree of -Alexander torsion for 3-manifolds, Invent. Math. 207, 981–1030, 2017. | DOI | MR | Zbl
[17] W. Lück. -invariants: theory and applications to geometry and -theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 44. Springer-Verlag, Berlin, 2002. | Zbl
[18] W. Lück. Lehmer’s Problem for arbitrary groups, to appear in Journal of Topology and Analysis, arXiv:1901.00827, 2019. | DOI
[19] W. Lück and T. Schick. -torsion of hyperbolic manifolds of finite volume, Geom. Funct. Anal. 9, no. 3, 518–567, 1999. | DOI | MR | Zbl
[20] Wolfram Research, Inc., Wolfram|Alpha Notebook Edition, Champaign, IL (2022), https://www.wolframalpha.com/.
Cited by Sources: