We construct uncountably many infinite characters of type II for , .
Révisé le :
Accepté le :
Publié le :
Keywords: Characters on groups
Rémi Boutonnet 1
CC-BY-NC-ND 4.0
@article{CML_2022__14_1_23_0,
author = {R\'emi Boutonnet},
title = {Infinite characters of type {II} on $\protect \mathrm{SL}_n(\protect \mathbb{Z})$},
journal = {Confluentes Mathematici},
pages = {23--33},
year = {2022},
publisher = {Institut Camille Jordan},
volume = {14},
number = {1},
doi = {10.5802/cml.80},
language = {en},
url = {https://cml.centre-mersenne.org/articles/10.5802/cml.80/}
}
TY - JOUR
AU - Rémi Boutonnet
TI - Infinite characters of type II on $\protect \mathrm{SL}_n(\protect \mathbb{Z})$
JO - Confluentes Mathematici
PY - 2022
SP - 23
EP - 33
VL - 14
IS - 1
PB - Institut Camille Jordan
UR - https://cml.centre-mersenne.org/articles/10.5802/cml.80/
DO - 10.5802/cml.80
LA - en
ID - CML_2022__14_1_23_0
ER -
%0 Journal Article
%A Rémi Boutonnet
%T Infinite characters of type II on $\protect \mathrm{SL}_n(\protect \mathbb{Z})$
%J Confluentes Mathematici
%D 2022
%P 23-33
%V 14
%N 1
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.80/
%R 10.5802/cml.80
%G en
%F CML_2022__14_1_23_0
Rémi Boutonnet. Infinite characters of type II on $\protect \mathrm{SL}_n(\protect \mathbb{Z})$. Confluentes Mathematici, Tome 14 (2022) no. 1, pp. 23-33. doi: 10.5802/cml.80
[1] U. Bader, R. Boutonnet, C. Houdayer, J. Peterson, Charmenability of Arithmetic groups of product type. Preprint 2020, arXiv:2009.09952.
[2] B. Bekka, Operator-algebraic superridigity for , . Invent. Math. 169 (2007), 401–425. | Zbl | MR | DOI
[3] B. Bekka, Infinite characters on , on , and on groups acting on trees, Preprint 2018, arXiv:1806.10110.
[4] B. Bekka, P. de la Harpe, Unitary representations of groups, duals, and characters. Mathematical Surveys and Monographs, 250. American Mathematical Society, Providence, RI, 2020. xi+474 pp. | Zbl | DOI
[5] B. Bekka, M. Kalantar, Quasi-regular representations of discrete groups and associated -algebras. arXiv:1903.00202
[6] R. Boutonnet, C. Houdayer, Stationary characters on lattices of semisimple Lie groups. arXiv:1908.07812
[7] K. Juschenko, N. Monod, Cantor systems, piecewise translations and simple amenable groups. Ann. of Math. (2) 178 (2013), no. 2, 775–787. | Zbl | MR | DOI
[8] G.W. Mackey, Induced representations of locally compact groups. I. Ann. of Math. (2) 55 (1952), 101–139. | Zbl | MR | DOI
[9] J. Peterson, Character rigidity for lattices in higher-rank groups. Preprint 2014.
[10] J. Rosenberg. Un complément à un théorème de Kirillov sur les caractères de d’un corps infini discret. C.R. Acad. Sci. Paris 309 (1989), Série I, 581–586. | Zbl
Cité par Sources :