Rectifiability of non Euclidean planar self-contracted curves
Confluentes Mathematici, Tome 8 (2016) no. 2, pp. 23-38.

We prove that any self-contracted curve in 2 endowed with a C 2 and strictly convex norm, has finite length. The proof follows from the study of the curve bisector of two points in 2 for a general norm together with an adaptation of the argument used in [2].

Reçu le : 2016-03-29
Révisé le : 2016-08-24
Accepté le : 2016-08-31
Publié le : 2017-03-20
DOI : https://doi.org/10.5802/cml.31
Classification : 53A04,  37N40,  49J52,  49J53,  52A10,  65K10
Mots clés: Self-contracted curve, uniformly convex norm, rectifiable curve, self-expanded curve, proximal algorithm
@article{CML_2016__8_2_23_0,
     author = {Antoine Lemenant},
     title = {Rectifiability of non Euclidean planar self-contracted curves},
     journal = {Confluentes Mathematici},
     publisher = {Institut Camille Jordan},
     volume = {8},
     number = {2},
     year = {2016},
     pages = {23-38},
     doi = {10.5802/cml.31},
     language = {en},
     url = {cml.centre-mersenne.org/item/CML_2016__8_2_23_0/}
}
Lemenant, Antoine. Rectifiability of non Euclidean planar self-contracted curves. Confluentes Mathematici, Tome 8 (2016) no. 2, pp. 23-38. doi : 10.5802/cml.31. https://cml.centre-mersenne.org/item/CML_2016__8_2_23_0/

[1] J. Bolte, A. Daniilidis, O. Ley and L. Mazet, Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity, Trans. Amer. Math. Soc. 362 (2010), 3319–3363.

[2] A. Daniilidis, G. David, E. Durand-Cartagena and A. Lemenant Rectifiability of Self-contracted curves in the euclidean space and applications. J. Geom. Anal. 25 (2015), no. 2, 1211–1239.

[3] A. Daniilidis, R. Deville, E. Durand-Cartagena and L. Rifford Self contracted curves in Riemannian manifolds. Preprint. (2015)

[4] A. Daniilidis and Y. Garcia Ramos, Some remarks on the class of continuous (semi-)strictly quasiconvex functions, J. Optim. Theory Appl. 133 (2007), 37–48.

[5] A. Daniilidis, O. Ley and S. Sabourau, Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex functions, J. Math. Pures Appl. 94 (2010), 183–199.

[6] S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in: Les Équations aux Dérivées Partielles, pp. 87–89, Éditions du centre National de la Recherche Scientifique, Paris, 1963.

[7] P. Manselli and C. Pucci, Maximum length of steepest descent curves for quasi-convex functions, Geom. Dedicata 38 (1991), 211–227.

[8] J. Palis and W. De Melo, Geometric theory of dynamical systems. An introduction, (Translated from the Portuguese by A. K. Manning), Springer-Verlag, New York-Berlin, 1982.