[Nilpotent cone over a finite field and hypergeometric -series]
We present different methods to compute the size of various nilpotent cones over a finite field. We insist in particular on the role hypergeometric functions play in these computations. To finish, we give a cohomological interpretation of our results.
On expose différentes méthodes pour le calcul du cardinal de divers cônes nilpotents sur un corps fini. On insiste particulièrement sur le rôle des fonctions hypergéométriques pour mener à bien ces calculs. On donne pour finir une raison cohomologique aux résultats obtenus.
Revised:
Accepted:
Published online:
Mots-clés : Corps finis, cône nilpotent, fonctions hypergéométriques, conjectures de Weil
Philippe Caldero 1
@article{CML_2016__8_2_3_0, author = {Philippe Caldero}, title = {C\^one nilpotent sur un corps fini et $q$-s\'eries hyperg\'eom\'etriques}, journal = {Confluentes Mathematici}, pages = {3--22}, publisher = {Institut Camille Jordan}, volume = {8}, number = {2}, year = {2016}, doi = {10.5802/cml.30}, language = {fr}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.30/} }
TY - JOUR AU - Philippe Caldero TI - Cône nilpotent sur un corps fini et $q$-séries hypergéométriques JO - Confluentes Mathematici PY - 2016 SP - 3 EP - 22 VL - 8 IS - 2 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.30/ DO - 10.5802/cml.30 LA - fr ID - CML_2016__8_2_3_0 ER -
Philippe Caldero. Cône nilpotent sur un corps fini et $q$-séries hypergéométriques. Confluentes Mathematici, Volume 8 (2016) no. 2, pp. 3-22. doi : 10.5802/cml.30. https://cml.centre-mersenne.org/articles/10.5802/cml.30/
[1] Partial resolutions of nilpotent varieties, Astérisque, Volume 101 (1983) no. 102, pp. 23-74
[2] Equivariant cohomology and equivariant intersection theory, Representation theories and algebraic geometry, Springer, 1998, pp. 1-37
[3] Counting symmetric nilpotent matrices, The Electronic Journal of Combinatorics, Volume 21 (2014) no. 2, pp. P2-4
[4] Cluster algebras as Hall algebras of quiver representations, arXiv preprint math/0410187 (2004)
[5] Histoires hédonistes de groupes et de géométries, Tome premier, 2012
[6] Histoires hédonistes de groupes et de géométries, Tome second, 2014
[7] The probability that a matrix be nilpotent, Illinois Journal of Mathematics, Volume 2 (1958) no. 4A, pp. 499-504
[8] Disquisitiones generales circa seriem infinitam, Dieterich, 1813
[9] An introduction to intersection homology theory, CRC Press, 2006
[10] Etale Cohomology (PMS-33), Princeton University Press, 1980 no. 33
Cited by Sources: