We prove that any self-contracted curve in endowed with a and strictly convex norm, has finite length. The proof follows from the study of the curve bisector of two points in for a general norm together with an adaptation of the argument used in [2].
Revised:
Accepted:
Published online:
Keywords: Self-contracted curve, uniformly convex norm, rectifiable curve, self-expanded curve, proximal algorithm
Antoine Lemenant 1
@article{CML_2016__8_2_23_0, author = {Antoine Lemenant}, title = {Rectifiability of non {Euclidean} planar self-contracted curves}, journal = {Confluentes Mathematici}, pages = {23--38}, publisher = {Institut Camille Jordan}, volume = {8}, number = {2}, year = {2016}, doi = {10.5802/cml.31}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.31/} }
TY - JOUR AU - Antoine Lemenant TI - Rectifiability of non Euclidean planar self-contracted curves JO - Confluentes Mathematici PY - 2016 SP - 23 EP - 38 VL - 8 IS - 2 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.31/ DO - 10.5802/cml.31 LA - en ID - CML_2016__8_2_23_0 ER -
Antoine Lemenant. Rectifiability of non Euclidean planar self-contracted curves. Confluentes Mathematici, Volume 8 (2016) no. 2, pp. 23-38. doi : 10.5802/cml.31. https://cml.centre-mersenne.org/articles/10.5802/cml.31/
[1] J. Bolte, A. Daniilidis, O. Ley and L. Mazet, Characterizations of Łojasiewicz inequalities: subgradient flows, talweg, convexity, Trans. Amer. Math. Soc. 362 (2010), 3319–3363.
[2] A. Daniilidis, G. David, E. Durand-Cartagena and A. Lemenant Rectifiability of Self-contracted curves in the euclidean space and applications. J. Geom. Anal. 25 (2015), no. 2, 1211–1239.
[3] A. Daniilidis, R. Deville, E. Durand-Cartagena and L. Rifford Self contracted curves in Riemannian manifolds. Preprint. (2015)
[4] A. Daniilidis and Y. Garcia Ramos, Some remarks on the class of continuous (semi-)strictly quasiconvex functions, J. Optim. Theory Appl. 133 (2007), 37–48.
[5] A. Daniilidis, O. Ley and S. Sabourau, Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex functions, J. Math. Pures Appl. 94 (2010), 183–199.
[6] S. Łojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in: Les Équations aux Dérivées Partielles, pp. 87–89, Éditions du centre National de la Recherche Scientifique, Paris, 1963.
[7] P. Manselli and C. Pucci, Maximum length of steepest descent curves for quasi-convex functions, Geom. Dedicata 38 (1991), 211–227.
[8] J. Palis and W. De Melo, Geometric theory of dynamical systems. An introduction, (Translated from the Portuguese by A. K. Manning), Springer-Verlag, New York-Berlin, 1982.
Cited by Sources: