This paper is devoted to establish semiclassical Weyl formulae for the Robin Laplacian on smooth domains in any dimension. Theirs proofs are reminiscent of the Born-Oppenheimer method.
Revised:
Accepted:
Published online:
Keywords: Robin Laplacian, Born-Oppenheimer approximation, Weyl formulae
Ayman Kachmar 1; Pierig Keraval 2; Nicolas Raymond 2
@article{CML_2016__8_2_39_0, author = {Ayman Kachmar and Pierig Keraval and Nicolas Raymond}, title = {Weyl formulae for the {Robin} {Laplacian} in the semiclassical limit}, journal = {Confluentes Mathematici}, pages = {39--57}, publisher = {Institut Camille Jordan}, volume = {8}, number = {2}, year = {2016}, doi = {10.5802/cml.32}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.32/} }
TY - JOUR AU - Ayman Kachmar AU - Pierig Keraval AU - Nicolas Raymond TI - Weyl formulae for the Robin Laplacian in the semiclassical limit JO - Confluentes Mathematici PY - 2016 SP - 39 EP - 57 VL - 8 IS - 2 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.32/ DO - 10.5802/cml.32 LA - en ID - CML_2016__8_2_39_0 ER -
%0 Journal Article %A Ayman Kachmar %A Pierig Keraval %A Nicolas Raymond %T Weyl formulae for the Robin Laplacian in the semiclassical limit %J Confluentes Mathematici %D 2016 %P 39-57 %V 8 %N 2 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.32/ %R 10.5802/cml.32 %G en %F CML_2016__8_2_39_0
Ayman Kachmar; Pierig Keraval; Nicolas Raymond. Weyl formulae for the Robin Laplacian in the semiclassical limit. Confluentes Mathematici, Volume 8 (2016) no. 2, pp. 39-57. doi : 10.5802/cml.32. https://cml.centre-mersenne.org/articles/10.5802/cml.32/
[1] Asymptotique semi-classique du spectre pour des opérateurs à symbole opératoriel, C. R. Acad. Sci. Paris Sér. I Math., Volume 301 (1985) no. 20, pp. 903-906
[2] Magnetic WKB Constructions, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 2, pp. 817-891 | DOI
[3] L’asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys., Volume 105 (1986) no. 2, pp. 327-335 http://projecteuclid.org/getRecord?id=euclid.cmp/1104115337
[4] Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987, x+319 pages
[5] Spectral asymptotics of a broken -interaction, J. Phys. A, Volume 47 (2014) no. 15, 155203, 19 pages | DOI
[6] Asymptotic eigenvalue estimates for a Robin problem with a large parameter, Port. Math., Volume 71 (2014) no. 2, pp. 141-156 | DOI
[7] Eigenvalues for the Robin Laplacian in domains with variable curvature, Trans. Amer. Math. Soc., Volume 369 (2017) no. 5, pp. 3253-3287
[8] Tunneling for the Robin Laplacian in smooth planar domains, Contemp. Math., Volume 19 (2017) no. 1, 1650030 (38 pages) pages
[9] Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, 1336, Springer-Verlag, Berlin, 1988, vi+107 pages
[10] On the mathematical treatment of the Born-Oppenheimer approximation, J. Math. Phys., Volume 55 (2014) no. 5, 053504, 26 pages | DOI
[11] On the Born-Oppenheimer expansion for polyatomic molecules, Comm. Math. Phys., Volume 143 (1992) no. 3, pp. 607-639 http://projecteuclid.org/euclid.cmp/1104249085
[12] Magnetic Effects in Curved Quantum Waveguides, Ann. Henri Poincaré, Volume 15 (2014) no. 10, pp. 1993-2024 | DOI
[13] The adiabatic limit of the Laplacian on thin fibre bundles, Microlocal methods in mathematical physics and global analysis (Trends Math.), Birkhäuser/Springer, Basel, 2013, pp. 33-36 | DOI
[14] On the principal eigenvalue of a Robin problem with a large parameter, Math. Nachr., Volume 281 (2008) no. 2, pp. 272-281 | DOI
[15] Resonances of diatomic molecules in the Born-Oppenheimer approximation, Comm. Partial Differential Equations, Volume 19 (1994) no. 7-8, pp. 1139-1162 | DOI
[16] A general reduction scheme for the time-dependent Born-Oppenheimer approximation, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 3, pp. 185-188 | DOI
[17] Remarks on the spectrum of the Neumann problem with magnetic field in the half-space, J. Math. Phys., Volume 46 (2005) no. 1, 012105, 13 pages | DOI
[18] Space-adiabatic perturbation theory, Adv. Theor. Math. Phys., Volume 7 (2003) no. 1, pp. 145-204 http://projecteuclid.org/euclid.atmp/1112627977
[19] The time-dependent Born-Oppenheimer approximation, M2AN Math. Model. Numer. Anal., Volume 41 (2007) no. 2, pp. 297-314 | DOI
[20] An effective Hamiltonian for the eigenvalues asymptotics of a Robin Laplacian with a large parameter, J. Math. Pures Appl., Volume 106 (2016), pp. 615-650
[21] Bound States of the Magnetic Schrödinger Operator, EMS Tracts, 27, Europ. Math. Soc., 2017
[22] Adiabatic perturbation theory in quantum dynamics, Lecture Notes in Mathematics, 1821, Springer-Verlag, Berlin, 2003, vi+236 pages | DOI
[23] Effective Hamiltonians for constrained quantum systems, Mem. Amer. Math. Soc., Volume 230 (2014) no. 1083, vi+83 pages
[24] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, Providence, RI, 2012, xii+431 pages
Cited by Sources: