Inspired by recent work of Peter O’Sullivan, we give a condition under which a faithful monoidal functor between abelian -categories is exact.
Revised:
Accepted:
Published online:
Keywords: Monoidal categories
Bruno Kahn 1
CC-BY-NC-ND 4.0
@article{CML_2022__14_2_45_0,
author = {Bruno Kahn},
title = {Exactness and faithfulness of monoidal functors},
journal = {Confluentes Mathematici},
pages = {45--51},
year = {2022},
publisher = {Institut Camille Jordan},
volume = {14},
number = {2},
doi = {10.5802/cml.86},
language = {en},
url = {https://cml.centre-mersenne.org/articles/10.5802/cml.86/}
}
Bruno Kahn. Exactness and faithfulness of monoidal functors. Confluentes Mathematici, Volume 14 (2022) no. 2, pp. 45-51. doi: 10.5802/cml.86
[1] Y. André Slope filtrations, Confluentes Math. 1 (2009) 1–85. | DOI | MR | Zbl
[2] L. Barbieri-Viale, A. Huber, M. Prest Tensor structure for Nori motives, Pacific J. Math. 306, 2020, 1–30. | DOI | MR | Zbl
[3] K. Coulembier Additive Grothendieck pretopologies and presentations of tensor categories, preprint, 2020, . | arXiv
[4] K. Coulembier, P. Etingof, V. Ostrik, B. Pauwels Monoidal Abelian Envelopes with a quotient property, J. Reine Angew. Math. 794 (2023), 179 – 214. | Zbl
[5] P. Deligne, J. S. Milne Tannakian categories, in Hodge cycles, motives, and Shimura varieties, Lect. Notes in Math. 900, Springer, 1982, 101–228. | DOI
[6] P. Deligne Catégories tannakiennes, in The Grothendieck Festschrift, Vol. II, Progr. Math. 87, Birkhäuser, 1990, 111–195. | DOI
[7] P. Deligne Catégories tensorielles, Moscow Math. J. 2 (2002), 227–248. | MR | Zbl | DOI
[8] P. O’Sullivan Super Tannakian hulls, preprint (2020), . | arXiv
Cited by Sources: