Approximate isomorphism of randomization pairs
Confluentes Mathematici, Tome 14 (2022) no. 2, pp. 29-44.

We study approximate 0 -categoricity of theories of beautiful pairs of randomizations, in the sense of continuous logic.

This leads us to disprove a conjecture of Ben Yaacov, Berenstein and Henson, by exhibiting 0 -categorical, 0 -stable metric theories Q for which the corresponding theory Q P of beautiful pairs is not approximately 0 -categorical, i.e., has separable models that are not isomorphic even up to small perturbations of the smaller model of the pair. The theory Q of randomized infinite vector spaces over a finite field is such an example.

On the positive side, we show that the theory of beautiful pairs of randomized infinite sets is approximately 0 -categorical. We also prove that a related stronger property, which holds in that case, is preserved under various natural constructions, and formulate our guesswork for the general case.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.85
Classification : 03C66, 03C45, 03C35, 22F50
Mots clés : continuous logic, randomization, approximate categoricity, $\aleph _0$-categoricity, $\aleph _0$-stability, beautiful pairs
James Hanson 1 ; Tomás Ibarlucía 2

1 Department of Mathematics, University of Maryland, 4176 Campus Dr., College Park, MD 20742-4015, USA.
2 Université Paris Cité, CNRS, IMJ-PRG, F-75006 Paris, France.
Licence : CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2022__14_2_29_0,
     author = {James Hanson and Tom\'as Ibarluc{\'\i}a},
     title = {Approximate isomorphism of randomization pairs},
     journal = {Confluentes Mathematici},
     pages = {29--44},
     publisher = {Institut Camille Jordan},
     volume = {14},
     number = {2},
     year = {2022},
     doi = {10.5802/cml.85},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.85/}
}
TY  - JOUR
AU  - James Hanson
AU  - Tomás Ibarlucía
TI  - Approximate isomorphism of randomization pairs
JO  - Confluentes Mathematici
PY  - 2022
SP  - 29
EP  - 44
VL  - 14
IS  - 2
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.85/
DO  - 10.5802/cml.85
LA  - en
ID  - CML_2022__14_2_29_0
ER  - 
%0 Journal Article
%A James Hanson
%A Tomás Ibarlucía
%T Approximate isomorphism of randomization pairs
%J Confluentes Mathematici
%D 2022
%P 29-44
%V 14
%N 2
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.85/
%R 10.5802/cml.85
%G en
%F CML_2022__14_2_29_0
James Hanson; Tomás Ibarlucía. Approximate isomorphism of randomization pairs. Confluentes Mathematici, Tome 14 (2022) no. 2, pp. 29-44. doi : 10.5802/cml.85. https://cml.centre-mersenne.org/articles/10.5802/cml.85/

[1] G. Ahlbrandt and M. Ziegler. Quasi-finitely axiomatizable totally categorical theories. Ann. Pure Appl. Logic, 30(1):63–82, 1986. Stability in model theory (Trento, 1984). | DOI | MR | Zbl

[2] I. Ben Yaacov. On perturbations of continuous structures. Journal of Mathematical Logic, 08(02):225–249, December 2008. | DOI | MR | Zbl

[3] I. Ben Yaacov. On uniform canonical bases in L p lattices and other metric structures. J. Log. Anal., 4:Paper 12, 30, 2012. | DOI | Zbl

[4] I. Ben Yaacov, A. Berenstein, and C. W. Henson. Almost indiscernible sequences and convergence of canonical bases. J. Symb. Log., 79(2):460–484, 2014. | DOI | MR | Zbl

[5] I. Ben Yaacov, A. Berenstein, C. W. Henson, and A. Usvyatsov. Model theory for metric structures. In Model theory with applications to algebra and analysis. Vol. 2, volume 350 of London Math. Soc. Lecture Note Ser., pages 315–427. Cambridge Univ. Press, Cambridge, 2008. | DOI | Zbl

[6] I. Ben Yaacov, M. Doucha, A. Nies, and T. Tsankov. Metric Scott analysis. Advances in Mathematics, 318:46–87, October 2017. | DOI | MR | Zbl

[7] I. Ben Yaacov and H. J. Keisler. Randomizations of models as metric structures. Confluentes Math., 1(2):197–223, 2009. | DOI | MR | Zbl

[8] I. Ben Yaacov and A. Usvyatsov. Continuous first order logic and local stability. Trans. Amer. Math. Soc., 362(10):5213–5259, 2010. | DOI | MR | Zbl

[9] B. Bodor. Classification of ω-categorical monadically stable structures. 2020. arXiv: 2011.08793v1 [math.LO].

[10] G. Cherlin, L. Harrington, and A. H. Lachlan. 0 -categorical, 0 -stable structures. Ann. Pure Appl. Logic, 28(2):103–135, 1985. | DOI | MR | Zbl

[11] J. Hanson. Approximate isomorphism of metric structures. 2020. arXiv:2011.00588 [math.LO].

[12] T. Ibarlucía. Automorphism groups of randomized structures. J. Symb. Log., 82(3):1150–1179, 2017. | DOI | MR | Zbl

[13] A. S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. | DOI | Zbl

[14] A. H. Lachlan. 0 -categorical tree-decomposable structures. J. Symbolic Logic, 57(2):501–514, 1992. | DOI | Zbl

[15] B. Poizat. Paires de structures stables. J. Symbolic Logic, 48(2):239–249, 1983. | DOI | MR | Zbl

Cité par Sources :