A priori and a posteriori error analysis for a hybrid formulation of a prestressed shell model
Confluentes Mathematici, Volume 14 (2022) no. 2, pp. 53-86.

This work deals with the finite element approximation of a prestressed shell model in the case of isometrically deformed shell. Using a new formulation where the unknowns (the displacement and the rotation of fibers normal to the midsurface) are described in Cartesian and local covariant basis respectively. Due to the constraint involved in the definition of the functional space, a penalized version is then considered. We obtain a non robust a priori error estimate of this penalized formulation, but a robust one is obtained for its mixed formulation. Moreover, we present a reliable and efficient a posteriori error estimator of the penalized formulation. Numerical tests are included that confirm the efficiency of our residual a posteriori estimator.

Revised after acceptance:
Published online:
DOI: 10.5802/cml.87
Classification: 74S05, 65N50
Keywords: finite element, adaptive methods, penalty method, hybrid formulation
Serge Nicaise 1; Ismael Merabet 2; Rihana Rezzag Bara 2

1 Université polytechnique Hauts-de-France, LAMAV, FR CNRS 2037, F-59313 - Valenciennes Cedex 9 France
2 Laboratoire de Mathématiques Appliquées, Université Kasdi Merbah, BP 511, Ouargla 30000, Algeria
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Serge Nicaise and Ismael Merabet and Rihana Rezzag Bara},
     title = {A priori and a posteriori error analysis for a hybrid formulation of a prestressed shell model},
     journal = {Confluentes Mathematici},
     pages = {53--86},
     publisher = {Institut Camille Jordan},
     volume = {14},
     number = {2},
     year = {2022},
     doi = {10.5802/cml.87},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.87/}
AU  - Serge Nicaise
AU  - Ismael Merabet
AU  - Rihana Rezzag Bara
TI  - A priori and a posteriori error analysis for a hybrid formulation of a prestressed shell model
JO  - Confluentes Mathematici
PY  - 2022
SP  - 53
EP  - 86
VL  - 14
IS  - 2
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.87/
DO  - 10.5802/cml.87
LA  - en
ID  - CML_2022__14_2_53_0
ER  - 
%0 Journal Article
%A Serge Nicaise
%A Ismael Merabet
%A Rihana Rezzag Bara
%T A priori and a posteriori error analysis for a hybrid formulation of a prestressed shell model
%J Confluentes Mathematici
%D 2022
%P 53-86
%V 14
%N 2
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.87/
%R 10.5802/cml.87
%G en
%F CML_2022__14_2_53_0
Serge Nicaise; Ismael Merabet; Rihana Rezzag Bara. A priori and a posteriori error analysis for a hybrid formulation of a prestressed shell model. Confluentes Mathematici, Volume 14 (2022) no. 2, pp. 53-86. doi : 10.5802/cml.87. https://cml.centre-mersenne.org/articles/10.5802/cml.87/

[1] K.-J. Bathe and E. Dvorkin. A formulation of general shell elements - the use of mixed interpolation of tensorial components. International Journal for Numerical Methods in Engineering, 22, 1986. | DOI | Zbl

[2] C. Bernardi, A. Blouza, F. Hecht, and H. Le Dret. A posteriori analysis of finite element discretizations of a Naghdi shell model. IMA J. Numer. Anal., 33(1):190–211, 2013. | DOI | MR | Zbl

[3] A. Blouza. Une formulation hybride du modèle de coque de Naghdi. Comptes Rendus Mathematique, 351(7-8):317–321, 2013. | DOI | Zbl

[4] A. Blouza, F. Hecht, and H. Le Dret. Two finite element approximations of Naghdi’s shell model in Cartesian coordinates. SIAM J. Numer. Anal., 44(2):636–654, 2006. | DOI | MR | Zbl

[5] C. Carstensen. Residual-based a posteriori error estimate for a nonconforming reissner-mindlin plate finite element. SIAM J. Numer. Anal., 39(6):2034–2044, 2002. | DOI | MR | Zbl

[6] C. Carstensen and J. Schöberl. Residual-based a posteriori error estimate for a mixed reissner-mindlin plate finite element method. Numerische Mathematik, 103(2):225–250, 2006. | DOI | Zbl

[7] D. Chapelle and K. J. Bathe. The finite element analysis of shells-fundamentals. Computational Fluid and Solid Mechanics. Springer, 2nd edition, 2011. | DOI | MR | Zbl

[8] P. Ciarlet. The finite element method for elliptic problems. North–Holland, Amsterdam, 1978. | DOI | Zbl

[9] P. G. Ciarlet. Mathematical elasticity. Vol. III, volume 29 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, 2000. Theory of shells.

[10] P. G. Ciarlet. An introduction to differential geometry with application to elasticity. J. Elasticity, 78/79(1-3):iv+215, 2005. | DOI | Zbl

[11] P. Clément. Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér., 9(R-2):77–84, 1975. | DOI | MR | Zbl

[12] W. Dörfler. A convergent adaptive algorithm for poisson’s equation. SIAM J. Numer. Anal., 33, 06 1996. | DOI | MR | Zbl

[13] V. Girault and R. P.-A. Finite element methods for Navier-Stokes equations, volume 5 of Springer Series in Computational Mathematics. Springer-Verlag, Berlin, 1986. Theory and algorithms. | DOI

[14] T. Grätsch and K.-J. Bathe. Influence functions and goal-oriented error estimation for finite element analysis of shell structures. International journal for numerical methods in engineering, 63(5):709–736, 2005. | DOI | MR | Zbl

[15] T. Grätsch and K.-J. Bathe. A posteriori error estimation techniques in practical finite element analysis. Computers and structures, 83(4-5):235–265, 2005. | DOI | MR

[16] F. Hecht. New development in freefem++. Journal of numerical mathematics, 20(3-4):251–266, 2012. | DOI | MR | Zbl

[17] M. Marohnić and J. Tambača. On a model of a flexural prestressed shell. Math. Methods Appl. Sci., 38(18):5231–5241, 2015. | DOI | MR | Zbl

[18] B. Maury. Numerical analysis of finite element/volume penalty method. SIAM J. Numer. Anal., 47:1126–1148, 2009. | DOI | MR | Zbl

[19] I. Merabet and S. Nicaise. A penalty method for a linear Koiter shell model. ESAIM Math. Model. Numer. Anal., 51(5):1783–1803, 2017. | DOI | MR | Zbl

[20] R. Rezzag Bara, S. Nicaise, and I. Merabet. Finite element approximation of a prestressed shell model. Math. Methods Appl. Sci., 43(7):4336–4352, 2020. | DOI | MR | Zbl

[21] E. Sanchez-Palencia, O. Millet, and F. Béchet. Singular Problems in Shell Theory Anisotropic Error Estimates in the Layers, volume 45 of Lecture Notes in Applied and Computational Mechanics. Springer, 2010.

[22] R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley–Teubner Series Advances in Numerical Mathematics. Wiley–Teubner, Chichester, Stuttgart, 1996. | Zbl

Cited by Sources: