The Nyman-Beurling criterion is an approximation problem in the space of square integrable functions on , which is equivalent to the Riemann hypothesis. This involves dilations of the fractional part function by factors , . We develop probabilistic extensions of the Nyman-Beurling criterion by considering these as random: this yields new structures and criteria, one of them having a significant overlap with the general strong Báez-Duarte criterion.
The main goal of the present paper is the study of the interplay between these probabilistic Nyman-Beurling criteria and the Riemann hypothesis. We are able to obtain equivalences in two main classes of examples: dilated structures as exponential distributions, and random variables , , concentrated around as is growing. By means of our probabilistic point of view, we bring an answer to a question raised by Báez-Duarte in 2005: the price to pay to consider non compactly supported kernels is a controlled condition on the coefficients of the involved approximations.
Revised:
Accepted:
Published online:
Keywords: Number theory; Probability; Zeta function; Nyman-Beurling criterion; Báez-Duarte criterion
Sébastien Darses 1; Erwan Hillion 1
@article{CML_2021__13_1_43_0, author = {S\'ebastien Darses and Erwan Hillion}, title = {On probabilistic generalizations of the {Nyman-Beurling} criterion for the zeta function}, journal = {Confluentes Mathematici}, pages = {43--59}, publisher = {Institut Camille Jordan}, volume = {13}, number = {1}, year = {2021}, doi = {10.5802/cml.71}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.71/} }
TY - JOUR AU - Sébastien Darses AU - Erwan Hillion TI - On probabilistic generalizations of the Nyman-Beurling criterion for the zeta function JO - Confluentes Mathematici PY - 2021 SP - 43 EP - 59 VL - 13 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.71/ DO - 10.5802/cml.71 LA - en ID - CML_2021__13_1_43_0 ER -
%0 Journal Article %A Sébastien Darses %A Erwan Hillion %T On probabilistic generalizations of the Nyman-Beurling criterion for the zeta function %J Confluentes Mathematici %D 2021 %P 43-59 %V 13 %N 1 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.71/ %R 10.5802/cml.71 %G en %F CML_2021__13_1_43_0
Sébastien Darses; Erwan Hillion. On probabilistic generalizations of the Nyman-Beurling criterion for the zeta function. Confluentes Mathematici, Volume 13 (2021) no. 1, pp. 43-59. doi : 10.5802/cml.71. https://cml.centre-mersenne.org/articles/10.5802/cml.71/
[1] N. Alon, J.H. Spencer. The probabilistic method. Third edition. With an appendix on the life and work of Paul Erdös. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons, Inc., Hoboken, NJ, 2008. | Zbl
[2] L. Báez-Duarte. A class of invariant unitary operators. Adv. Math., 144 (1999), no. 1, 1–12. | DOI | MR | Zbl
[3] L. Báez-Duarte. A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis, Rend. Mat. Ac. Lincei, S. 9, 14 (2003) 1, 5-11. | Zbl
[4] L. Báez-Duarte. A general strong Nyman-Beurling criterion for the Riemann hypothesis. Publications de l’Institut Mathématique, Nouvelle Série, 78 (2005), pp. 117–125. | DOI | MR | Zbl
[5] L. Báez-Duarte, M. Balazard, B. Landreau and É. Saias. Notes sur la fonction de Riemann, 3. (French) [Notes on the Riemann -function, 3] Adv. Math., 149 (2000), no. 1, 130–144. | DOI | MR | Zbl
[6] L. Báez-Duarte, M. Balazard, B. Landreau and É. Saias. Étude de l’autocorrélation multiplicative de la fonction “partie fractionnaire”. (French) The Ramanujan Journal, 9(1) (2005), pp. 215–240. | DOI | Zbl
[7] L. Báez-Duarte, M. Balazard, B. Landreau and É. Saias. Document de travail – Étude de l’autocorrélation multiplicative de la fonction “partie fractionnaire”. (French)
[8] M. Balazard. Un siècle et demi de recherches sur l’hypothèse de Riemann. La Gazette des mathématiques, 126 (2010), pp.7–24. | Zbl
[9] M. Balazard and A. de Roton. Sur un critère de Báez-Duarte pour l’hypothèse de Riemann. International Journal of Number Theory, 6(04) (2010), pp. 883–903. | DOI | Zbl
[10] M. Balazard, and É. Saias. Notes sur la fonction de Riemann, 4. Advances in Mathematics, 188(1) (2004), pp. 69–86. | DOI | MR | Zbl
[11] A. Beurling. A closure problem related to the Riemann Zeta-function. Proceedings of the National Academy of Sciences, 41(5) (1955), pp. 312–314. | DOI | MR | Zbl
[12] J.F. Burnol. A lower bound in an approximation problem involving the zeros of the Riemann zeta function. Advances in Mathematics, 170(1) (2002), pp.56–70. | DOI | MR | Zbl
[13] J.F. Burnol. Entrelacement de co-Poisson. (French) [Co-Poisson links] Ann. Inst. Fourier (Grenoble) 57 (2007), no. 2, 525–602. | DOI | MR | Zbl
[14] J.B. Conrey. The Riemann hypothesis. Notices Amer. Math. Soc., 50 (2003), no. 3, 341–353. | Zbl
[15] S. Darses and E. Hillion. An exponentially-averaged Vasyunin formula. Proc. of the American Math. Soc. To appear https://doi.org/10.1090/proc/15422. | DOI | MR | Zbl
[16] C. Delaunay, E. Fricain, E. Mosaki, O. Robert. Zero-free regions for Dirichlet series. Trans. Amer. Math. Soc., 365 (2013), no. 6, 3227–3253. | DOI | MR | Zbl
[17] N.Nikolski. Distance formulae and invariant subspaces, with an application to localization of zeros of the Riemann -function. Annales de l’institut Fourier Vol. 45, No. 1 (1995), pp. 143-159. | DOI | MR | Zbl
[18] B. Nyman. On the one-dimensional translation group and semi-group in certain function spaces. Thesis, University of Uppsala, 1950. | Zbl
[19] G. Tenenbaum. Introduction à la théorie analytique et probabiliste des nombres, Société mathématique de France, 1995. | Zbl
[20] E. C. Titchmarsh, The theory of the Riemann zeta-function, second ed., The Clarendon Press Oxford University Press, New York, 1986. | Zbl
[21] V.I. Vasyunin. On a biorthogonal system associated with the Riemann hypothesis. (Russian) Algebra i Analiz 7, no. 3 (1995): 118-35; translation in St. Petersburg Mathematical Journal 7, no. 3 (1996): 405-19.
[22] A. Weingartner. On a question of Balazard and Saias related to the Riemann hypothesis. Adv. Math. 208 (2007), no. 2, 905–908. | DOI | MR | Zbl
Cited by Sources: