The construction of a random continuum from independent two-sided Brownian motions as considered in [11] almost surely yields a non-degenerate indecomposable continuum. We show that is not-hereditarily indecomposable and, in particular, it is (unfortunately) not the pseudo-arc.
Revised:
Accepted:
Published online:
Keywords: continuum, iterated Brownian motions, pseudo-arc
Jérôme Casse 1; Nicolas Curien 2
@article{CML_2021__13_1_35_0, author = {J\'er\^ome Casse and Nicolas Curien}, title = {Iterated {Brownian} motion ad libitum is not the pseudo-arc}, journal = {Confluentes Mathematici}, pages = {35--42}, publisher = {Institut Camille Jordan}, volume = {13}, number = {1}, year = {2021}, doi = {10.5802/cml.70}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.70/} }
TY - JOUR AU - Jérôme Casse AU - Nicolas Curien TI - Iterated Brownian motion ad libitum is not the pseudo-arc JO - Confluentes Mathematici PY - 2021 SP - 35 EP - 42 VL - 13 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.70/ DO - 10.5802/cml.70 LA - en ID - CML_2021__13_1_35_0 ER -
%0 Journal Article %A Jérôme Casse %A Nicolas Curien %T Iterated Brownian motion ad libitum is not the pseudo-arc %J Confluentes Mathematici %D 2021 %P 35-42 %V 13 %N 1 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.70/ %R 10.5802/cml.70 %G en %F CML_2021__13_1_35_0
Jérôme Casse; Nicolas Curien. Iterated Brownian motion ad libitum is not the pseudo-arc. Confluentes Mathematici, Volume 13 (2021) no. 1, pp. 35-42. doi : 10.5802/cml.70. https://cml.centre-mersenne.org/articles/10.5802/cml.70/
[1] Iterated Brownian motion and stable subordinator, Statist. Probab. Lett., Volume 27 (1996) no. 2, pp. 111-114 | DOI | MR | Zbl
[2] A homogeneous indecomposable plane continuum, Duke Math. J., Volume 15 (1948), pp. 729-742 http://projecteuclid.org/euclid.dmj/1077475025 | MR | Zbl
[3] Concerning hereditarily indecomposable continua, Pacific J. Math., Volume 1 (1951), pp. 43-51 http://projecteuclid.org/euclid.pjm/1102613150 | DOI | MR | Zbl
[4] Some path properties of iterated Brownian motion, Seminar on Stochastic Processes, 1992 (Seattle, WA, 1992) (Progr. Probab.), Volume 33 (1993), pp. 67-87 | DOI | MR | Zbl
[5] The level sets of iterated Brownian motion, Séminaire de Probabilités, XXIX (Lecture Notes in Math.), Volume 1613, Springer, Berlin, 1995, pp. 231-236 | DOI | Numdam | MR | Zbl
[6] Processes iterated ad libitum, Stochastic Process. Appl., Volume 126 (2016) no. 11, pp. 3353-3376 | DOI | MR | Zbl
[7] Iterating Brownian motions, ad libitum, J. Theoret. Probab., Volume 27 (2014) no. 2, pp. 433-448 | DOI | MR | Zbl
[8] Uniform oscillations of the local time of iterated Brownian motion, Bernoulli, Volume 5 (1999) no. 1, pp. 49-65 | DOI | MR | Zbl
[9] Probabilistic construction of the solution of some higher order parabolic differential equation, Proc. Japan Acad. Ser. A Math. Sci., Volume 55 (1979) no. 5, pp. 176-179 http://projecteuclid.org/euclid.pja/1195517312 | MR | Zbl
[10] Iterated Brownian motion and its intrinsic skeletal structure, Seminar on Stochastic Analysis, Random Fields and Applications (Ascona, 1996) (Progr. Probab.), Volume 45 (1999), pp. 201-210 | DOI | MR | Zbl
[11] Random continuum and Brownian motion, arXiv preprint arXiv:2004.01367 (2020)
[12] Un continu dont tout sous-continu est indécomposable, Fundamenta Mathematicae, Volume 1 (1922) no. 3, pp. 247-286 | DOI | Zbl
[13] Drawing the pseudo-arc, Houston J. Math, Volume 36 (2010), pp. 905-934 | MR | Zbl
[14] An indecomposable plane continuum which is homeomorphic to each of its nondegenerate subcontinua, Trans. Amer. Math. Soc., Volume 63 (1948), pp. 581-594 | DOI | MR | Zbl
[15] Brownian motion, Cambridge Series in Statistical and Probabilistic Mathematics, 30, Cambridge University Press, Cambridge, 2010, xii+403 pages (With an appendix by Oded Schramm and Wendelin Werner) | DOI | MR | Zbl
[16] Continuum theory : an introduction, Monographs and Textbooks in Pure and Applied Mathematics, 158, Marcel Dekker, Inc., New York, 1992, xiv+328 pages | MR | Zbl
[17] Fractional diffusion equations and processes with randomly varying time, Ann. Probab., Volume 37 (2009) no. 1, pp. 206-249 | DOI | MR | Zbl
[18] Local times and related properties of multidimensional iterated Brownian motion, J. Theoret. Probab., Volume 11 (1998) no. 2, pp. 383-408 | DOI | MR | Zbl
Cited by Sources: