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ITERATED BROWNIAN MOTION AD LIBITUM IS NOT THE
PSEUDO-ARC

JÉRÔME CASSE AND NICOLAS CURIEN

Abstract. The construction of a random continuum C from independent two-sided Brow-
nian motions as considered in [11] almost surely yields a non-degenerate indecomposable
continuum. We show that C is not-hereditarily indecomposable and, in particular, it is
(unfortunately) not the pseudo-arc.

1. Introduction

Iterated Brownian motions ad libitum. Let (Bi)i>1 be a sequence of i.i.d. two-
sided Brownian motions (BM), i.e. (Bi(t))t>0 and (Bi(−t))t>0) are independent
standard linear Brownian motions started from 0. The nth iterated BM is

I(n) = B1 ◦ · · · ◦Bn. (1.1)

The doubly iterated Brownian motion I(2) has been deeply studied in the 90’s.
It permits to construct solutions to partial differential equations [9] and lots of
results about its probabilistic and analytic properties can be found in [1, 4, 5, 8,
10, 17, 18] and references therein. Of course I(n) is wilder and wilder as n increases
(see Figure 1.1) but in [7], second author and Konstantopoulos proved that the
occupation measure of I(n) over [0, 1] converges as n → ∞ towards a random
probability measure Ξ which can be though of as iterated Brownian motions ad
libitum. This object has then been studied in [6] by the first author and Marckert,
and they gave a description of Ξ using invariant measure of an iterated functions
system (IFS). However, many distributional properties of Ξ remain open.
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Figure 1.1. Simulations of I(1), I(2) and I(3), the first three it-
erations of independent two-sided Brownian motions. The ar-
ticle studies the random continuum build out the sequence of
(I(n) : n > 1).
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Continuum and pseudo-arc. In a recent work, Kiss and Solecki used iterated
Brownian motions to define a random continuum. Recall that a continuum is a
nonempty, compact, connected metric space. They were interested by the so-called
pseudo-arc. The pseudo-arc is a homogeneous continuum which is similar to an
arc, so similar, that its existence was unclear in the beginning of the last century.
A continuum C is

• reduced to a singleton, if the cardinality of C is one. It is non reduced to
a singleton if it contains at least two elements.

• chainable (also called arc-like, see [16, Theorem 12.11]), if for each ε > 0,
there exists a continuous function f : C → [0, 1] such that the pre-images
of points under f have diameter less than ε.

• decomposable, if there exist A and B two subcontinua of C such that
A,B 6= C and C = A ∪ B. A non decomposable continuum is called
indecomposable.

• hereditarily indecomposable if any of its subcontinuum is indecomposable.
By [3], the pseudo-arc is the unique (up to homeomorphisms) chainable and hered-
itarily indecomposable continuum non reduced to a singleton. In particular, any
subcontinuum (non reduced to a singleton) of a pseudo-arc is a pseudo-arc. Its
name “pseudo-arc” comes from this property because arcs have the same property,
in the sense that any subcontinuum (non reduced to a singleton) of an arc is an arc.
For more information on pseudo-arc, we refer the interested reader to the second
paragraph of [16, Chapter XII] and to [2, 3, 12, 14]. Sadly, it is very complicated to
get a “drawing” of the pseudo-arc due to its complicated crocked structure, see [16,
Exercise 1.23] and [13]. Following the works of Bing, one can wonder whether the
pseudo-arc is typical among arc-like continua and ask whether there is a natural
probabilistic construction of the pseudo-arc.

Let us recall the construction of continua from inverse limits used in [11], see
[16, Section II.2] for details. Suppose we are given a sequence

· · · f3−→ X3
f2−→ X2

f1−→ X1

where for any i > 1, the metric space (Xi, di) is compact and fi : Xi+1 → Xi

is a continuous surjective function. Then the inverse limit of ({Xi, fi})i>1 is the
subspace of

∏
i>1 Xi defined by

lim←−(fi, Xi : i > 1) =

(xi)i>1 ∈
∏
i>1

Xi : fi(xi+1) = xi

 . (1.2)

In the application below Xi are compact intervals of R and in this case, by [16,
Theorems 2.4 and 12.19], the inverse limit is a chainable continuum. In [11], Kiss
and Solecki constructed a system as above using two-sided independent Brownian
motions (Bi : i > 1). More precisely, they proved that for any interval J of R with
0 ∈ J and J 6= {0}, the following limit exists almost surely

Ii = lim
m→∞

Bi (Bi+1 (. . . (Bi+m (J)) . . . )) , (1.3)

and does not depend on J , so that we can consider the random chainable continuum
C obtained as the inverse limit of the system

· · · B3−−→ I3
B2−−→ I2

B1−−→ I1.
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Kiss and Solecki proved [11, Theorem 1] that the random chainable continuum C
is almost surely non-degenerate and indecomposable. This note answers negatively
the obvious question the preceding result triggers:

Theorem 1.1. — Almost surely, the random continuum C is not hereditarily
indecomposable (hence is not the pseudo-arc).

The proof below could be adapted to prove that a random continuum constructed
similarly from a sequence of i.i.d. reflected Brownian motions is neither a pseudo-
arc, answering a question in [11, Section 4.3.1]. Although almost surely not homeo-
morphic to the pseudo-arc, the random continuum C is interesting in itself and one
could ask about its topological property, e.g. we wonder whether the topology of C
is almost surely constant and if it is easy to characterise.

2. Finding good intervals

In the rest of the article the Brownian motions Bi are fixed and we recall the
definition of Ii in (1.3) and of the continuum C. We will show that Theorem 1.1
follows from the proposition below stated in terms of images of intervals under the
flow of independent Brownian motions whose proof occupy the remaining of the
article:

Proposition 2.1. — For any ε > 0 small enough, with probability at least

pε =
∞∏

i=1
1− 2

(
ε(5/4)i−1

)1/8
> 0,

there exist two sequences (Ui)i>1 and (Vi)i>1 of subintervals of R such that, for
any i > 1, the five following conditions are satisfied

(1) Ui, Vi ⊂ Ii where Ii is defined in (1.3),
(2) Ui * Vi and Vi * Ui,
(3) Ui ∩ Vi 6= ∅,
(4) Ui = Bi(Ui+1) and Vi = Bi(Vi+1),
(5) |Ui|, |Vi| 6 ε(5/4)i−1 .

Proof of Theorem 1.1 given Proposition 2.1. In the proof, since we are always
working with the functions Bi we write lim←−(Wi : i > 1) for the inverse limit
previously denoted by lim←−(Bi,Wi : i > 1) for any sequence of intervals W1,W2, ...

such that Wi+1
Bi−−→ Wi. On the event described in the above proposition we have

with probability at least pε > 0:
• For any i > 1, Bi(Ui+1 ∪ Vi+1) = Ui ∪ Vi (point 4) and Ui ∪ Vi ⊂ Ii

(point 1) and Ui ∪ Vi is an interval (point 3), so by Lemma 2.6 of [16],
lim←−(Ui ∪ Vi : i > 1) is a subcontinuum of C.

• By Lemma 2.6 of [16], both lim←−(Ui : i > 1) and lim←−(Vi : i > 1) are also
subcontinua of lim←−(Ui ∪ Vi : i > 1).

• Let x = (xi)i>1 ∈ lim←−(Ui ∪ Vi : i > 1), then
– either, for any i, we have xi ∈ Ui ∩ Vi, and so x ∈ lim←−(Ui : i > 1) and
x ∈ lim←−(Vi : i > 1),

– or there exists j > 1 such that xj ∈ Uj and xj /∈ Vj , but then by
point 4 we have xi ∈ Ui for all i > j and so x ∈ lim←−(Ui : i > 1),
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– or there exists j > 1 such that xj /∈ Uj and xj ∈ Vj and similarly we
deduce that x ∈ lim←−(Vi : i > 1).

Hence, lim←−(Ui∪Vi : i > 1) ⊂ lim←−(Ui : i > 1)∪ lim←−(Vi : i > 1) and the reverse
inclusion is obvious.

• lim←−(Ui∪Vi : i > 1) 6= lim←−(Ui : i > 1) nor lim←−(Ui∪Vi : i > 1) 6= lim←−(Vi : i > 1)
by combining point 2 and point 4.

All of these points imply that lim←−(Ui ∪ Vi : i > 1) is a decomposable subcontinuum
of C = lim←−(Ii : i > 1). That implies that C is not a pseudo-arc with probability
at least pε for any ε > 0. As pε → 1 when ε → 0, it is not a pseudo-arc with
probability one. �

2.1. Construction of a decomposable subcontinuum using good shape
excursions. Let us now explain the idea behind the construction of the intervals
of Proposition 2.1. This relies on the concept of excursions with a good shape.
Imagine that we have a sequence of non trivial intervals [ui, vi] ⊂ [0, 1] such that
Bi([ui+1, vi+1]) = [ui, vi] and furthermore that Bi(ui+1) = ui and Bi(vi+1) = vi

andBi(t) ∈ (ui, vi) for t ∈ (ui+1, vi+1). In words, over the time interval [ui+1, vi+1],
the Brownian motion Bi makes an excursion from ui to vi. We say that this
excursion has a good shape if it stays in the pentomino of Figure 2.1.

ui

2ui + vi

3

ui + 2vi

3

vi

ui+1
2ui+1 + vi+1

3

ui+1 + 2vi+1

3
vi+1

Figure 2.1. An excursion from ui to vi over the time interval
[ui+1, vi+1] has a good shape if it stays in the light grey region.

If we have such a sequence of intervals and excursions, then one can define a
sequence of intervals Ui, Vi by setting for any i > 1,

Ui = lim
n→∞

(Bi ◦Bi+1 ◦ · · · ◦Bi+n−1)
([
ui+n,

ui+n + 2vi+n

3

])
︸ ︷︷ ︸

Ui,n

and

Vi = lim
n→∞

(Bi ◦Bi+1 ◦ · · · ◦Bi+n−1)
([

2ui+n + vi+n

3 , vi+n

])
.
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First, these two limits exist a.s. and are closed intervals a.s. because they are
limits of a sequence of decreasing closed intervals. Indeed, because Bi+n performs
a good shape excursion from ui+n to vi+n over [ui+n+1, vi+n+1] we have

Bi+n

([
ui+n+1,

ui+n+1 + 2vi+n+1

3

])
⊂
[
ui+n,

ui+n + 2vi+n

3

]
, and so

Ui,n+1 ⊂ Ui,n,

and Ui,n are intervals because the BM is continuous a.s. It is then an easy matter
to check that the interval constructed above satisfies points 2-4 of Proposition 2.1.
Our task is thus to construct the sequence ui, vi so that Bi performs a good shape
excursion from ui to vi over [ui+1, vi+1] and to ensure points 1 and 5 of Propo-
sition 2.1. The key idea is to look for these intervals in the vicinity of 0 because
any given small interval close to 0 has MANY pre-images close to 0 by a Brownian
motion. These many pre-images enable us to select one with a good shape.

2.2. Pre-images of a small interval by a Brownian motion. In the following
lemma the dependence in i is superfluous but we keep it to make the connection
with the preceding discussion easier to understand.

Lemma 2.2. — Let ai be any real positive number small enough. Fix [ui, vi] ⊂
[0, ai]. Then with probability at least

1− 2a1/8
i

we can find [ui+1, vi+1] ⊂ [0, a5/4
i ] so that Bi performs an excursion with a good

shape from ui to vi over the time interval [ui+1, vi+1].

Proof. — Fix 0 < ui < vi and consider the successive excursions E1, E2, ... that
the Brownian motion Bi performs from ui to vi over the respective time inter-
vals [u(1)

i+1, v
(1)
i+1], [u(2)

i+1, v
(2)
i+1], · · · . By the Markov property of Brownian motion and

standard argument in excursion theory, these excursions are i.i.d. We claim that

r = P(E has a good shape) > 0.

Indeed, since the law of Brownian motion has full support in the space of continuous
functions (with the topology of uniform convergence over all compacts of R+), the
first excursion from ui to vi might be close to any prescribed continuous function
and in particular, the probability to have a good shape is strictly positive. See
Figure 2.2.

Hence, the probability that at least one of the k first excursions has a good shape
is at least

1− (1− r)k.

To control the number of excursions from ui to vi performed up to time ai by Bi,
we introduce the auxiliary stopping times defined by w(1)

i+1 = inf{t > 0 : Bi(t) = ui}
and for k > 2

w
(k)
i+1 = inf{t > v(k−1)

i+1 : Bi(t) = ui}.

Hence w
(1)
i+1 < v

(1)
i+1 < w

(2)
i+1 < v

(2)
i+1 < · · · are the successive hitting times of

ui, vi, ui, vi by Bi, see Figure 2.3. For a > 0, we let Ta = inf{t > 0 : Bi(t) = a} the
hitting time of a by a standard linear Brownian motion. It is classic (see e.g. [15,
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ui

vi

u
(1)
i+1 v

(1)
i+1

1

Figure 2.2. For any given continuous function f starting from
0 and any ε > 0, the Brownian motion may stay within distance
ε > 0 of f up to time 1 with a positive probability. Choosing f
carefully, we deduce that the first excursion from ui to vi has a
good shape with positive probability.

ui

vi

w
(1)
i+1

u
(1)
i+1 v

(1)
i+1 w

(2)
i+1 u

(2)
i+1 v

(2)
i+1 w

(3)
i+1 u

(3)
i+1 v

(3)
i+1

E1

E2 E3

Figure 2.3. In red, blue and orange, the excursion from ui to vi

we consider.

Theorem 2.35]) that for a > 0 we have Ta = a2 · T1 in law where T1 is distributed
according to the Lévy law

T1 =
(d)

dt√
2πt3

exp
(
− 1

2t

)
1t>0.

In our case, applying the strong Markov property at time w(1)
i+1 < v

(1)
i+1 < w

(2)
i+1 <

v
(2)
i+1 < · · · and using invariance by symmetry we deduce that we have the equalities
in distribution

w
(1)
i+1

(d)= Tui , v
(1)
i+1

(d)= Tui+|vi−ui|, w
(2)
i+1

(d)= Tui+2|vi−ui|,

. . . , v
(k)
i+1

(d)= Tui+(2k−1)|vi−ui|,
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for k > 2. Since Tui+(2k−1)|vi−ui| 6 T2kai
, the probability that the first k excursions

of Bi occurs before a5/4
i is at least

P
(
T2kai

< a
5/4
i

) (by scaling)= P

T1 <

(
1

2k a3/8
i

)2
 > 1−

√
2
π

2ka3/8
i .

The last inequality holds because, for any x > 0,

P
(
T1 <

1
x2

)
=
∫ 1/x2

0

1√
2πt3

exp
(
− 1

2t

)
dt =

∫ ∞
x

2√
2π

exp
(
−u

2

2

)
du

= 1−
∫ x

−x

1√
2π

exp
(
−u

2

2

)
du > 1−

∫ x

−x

1√
2π

du = 1−
√

2
π
x.

Gathering-up the above remarks and taking k = ba−1/4
i c, we deduce that the

probability to do not find an excursion from ui to vi with a good shape in [0, a5/4
i ]

is bounded above by

(1− r)ba
−1/4
i

c + 2
√

2
π
ba−1/4

i ca3/8
i 6 2a−1/8

i (for ai small enough). �

3. Proof of Proposition 2.1

Let (Bi)i>1 be a sequence of i.i.d. two-sided Brownian motions, and ε be any
real positive number small enough. For any i > 1, take ai = ε(5/4)i−1 .

Firstly, we put [u1, v1] = [0, ε] = [0, a1], by Lemma 2.2, with probability at least
1−2a1/8

1 , there exists an interval [u2, v2] ⊂ [0, a5/4
1 ] = [0, a2] such that B1 performs

a good shape excursion from u1 to v1 over the time interval [u2, v2]. Now, we apply
Lemma 2.2 to [u2, v2] ⊂ [0, a2], etc. At the end, with probability at least

∞∏
i=1

1− 2
(
ε(5/4)i−1

)1/8
,

we obtain a sequence of non trivial intervals ([ui, vi])i>1 such that for any i, Bi

makes a good shape excursion from ui to vi over [ui+1, vi+1]. By Section 2.1,
we can then construct two sequences of intervals Ui, Vi that satisfy points 2-4 of
Proposition 2.1. Moreover, by construction, Ui, Vi ⊂ [ui, vi] ⊂ [0, ai], hence point 5
is also satisfied.

Finally, to obtain point 1, just remark that, for any i, n > 1, [ui+n, vi+n] ⊂
[0, ai+n] ⊂ [0, 1], so

Ui = lim
n→∞

(Bi ◦Bi+1 ◦ · · · ◦Bi+n)
([
ui+n+1,

ui+n+1 + 2vi+n+1

3

])
⊂ lim

n→∞
(Bi ◦Bi+1 ◦ · · · ◦Bi+n) ([0, 1]) = Ii (by (1.3)).

Similarly, Vi ⊂ Ii. �
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