We show that the epimorphism problem is solvable for targets that are virtually cyclic or a product of an Abelian group and a finite group.
Revised:
Accepted:
Published online:
Keywords: residual properties of groups, algorithms on groups
Stefan Friedl 1; Clara Löh 1

@article{CML_2021__13_1_61_0, author = {Stefan Friedl and Clara L\"oh}, title = {Epimorphism testing with virtually {Abelian} targets}, journal = {Confluentes Mathematici}, pages = {61--78}, publisher = {Institut Camille Jordan}, volume = {13}, number = {1}, year = {2021}, doi = {10.5802/cml.72}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.72/} }
TY - JOUR AU - Stefan Friedl AU - Clara Löh TI - Epimorphism testing with virtually Abelian targets JO - Confluentes Mathematici PY - 2021 SP - 61 EP - 78 VL - 13 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.72/ DO - 10.5802/cml.72 LA - en ID - CML_2021__13_1_61_0 ER -
Stefan Friedl; Clara Löh. Epimorphism testing with virtually Abelian targets. Confluentes Mathematici, Volume 13 (2021) no. 1, pp. 61-78. doi : 10.5802/cml.72. https://cml.centre-mersenne.org/articles/10.5802/cml.72/
[1] G. Baumslag. Residually finite groups with the same finite images, Compos. Math. 29, 249-252, 1974. | DOI | MR | Zbl
[2] K. S. Brown. Cohomology of Groups, volume 87 of Graduate Texts in Mathematics, Springer, 1982. | DOI | Zbl
[3] H. Cohen. A course in computational algebraic number theory, volume 138 of Graduate Texts in Mathematics, Springer, 1993. | DOI | Zbl
[4] C. Löh. Geometric group theory. An introduction, Universitext, Springer, 2017. | DOI | Zbl
[5] W. Magnus, A. Karrass, D. Solitar. Combinatorial Group Theory. Presentations of Groups in Terms of Generators and Relations, second revised edition, Dover, 1976. | DOI | MR | Zbl
[6] C. F. Miller III. Decision problems for groups-survey and reflections, Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), 1–59, Math. Sci. Res. Inst. Publ., 23, Springer, 1992. | DOI | Zbl
[7] V. N. Remeslennikov. An algorithmic problem for nilpotent groups and rings, Sibirsk. Mat. Zh., 20(5), 1077–1081, 1979. | DOI | MR | Zbl
[8] L. Ribes and P. Zalesskii. Profinite groups, Second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 40. Springer-Verlag, Berlin, 2010. | DOI | Zbl
Cited by Sources: