Epimorphism testing with virtually Abelian targets
Confluentes Mathematici, Volume 13 (2021) no. 1, pp. 61-78.

We show that the epimorphism problem is solvable for targets that are virtually cyclic or a product of an Abelian group and a finite group.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/cml.72
Classification: 20E18,  20F65
Keywords: residual properties of groups, algorithms on groups
Stefan Friedl 1; Clara Löh 1

1 Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
@article{CML_2021__13_1_61_0,
     author = {Stefan Friedl and Clara L\"oh},
     title = {Epimorphism testing with virtually {Abelian} targets},
     journal = {Confluentes Mathematici},
     pages = {61--78},
     publisher = {Institut Camille Jordan},
     volume = {13},
     number = {1},
     year = {2021},
     doi = {10.5802/cml.72},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.72/}
}
TY  - JOUR
TI  - Epimorphism testing with virtually Abelian targets
JO  - Confluentes Mathematici
PY  - 2021
DA  - 2021///
SP  - 61
EP  - 78
VL  - 13
IS  - 1
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.72/
UR  - https://doi.org/10.5802/cml.72
DO  - 10.5802/cml.72
LA  - en
ID  - CML_2021__13_1_61_0
ER  - 
%0 Journal Article
%T Epimorphism testing with virtually Abelian targets
%J Confluentes Mathematici
%D 2021
%P 61-78
%V 13
%N 1
%I Institut Camille Jordan
%U https://doi.org/10.5802/cml.72
%R 10.5802/cml.72
%G en
%F CML_2021__13_1_61_0
Stefan Friedl; Clara Löh. Epimorphism testing with virtually Abelian targets. Confluentes Mathematici, Volume 13 (2021) no. 1, pp. 61-78. doi : 10.5802/cml.72. https://cml.centre-mersenne.org/articles/10.5802/cml.72/

[1] G. Baumslag. Residually finite groups with the same finite images, Compos. Math. 29, 249-252, 1974. | Zbl: 0309.20007

[2] K. S. Brown. Cohomology of Groups, volume 87 of Graduate Texts in Mathematics, Springer, 1982. | Article | Zbl: 0584.20036

[3] H. Cohen. A course in computational algebraic number theory, volume 138 of Graduate Texts in Mathematics, Springer, 1993. | Article | Zbl: 0786.11071

[4] C. Löh. Geometric group theory. An introduction, Universitext, Springer, 2017. | Zbl: 1426.20001

[5] W. Magnus, A. Karrass, D. Solitar. Combinatorial Group Theory. Presentations of Groups in Terms of Generators and Relations, second revised edition, Dover, 1976. | Zbl: 0362.20023

[6] C. F. Miller III. Decision problems for groups-survey and reflections, Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), 1–59, Math. Sci. Res. Inst. Publ., 23, Springer, 1992. | Article | Zbl: 0752.20014

[7] V. N. Remeslennikov. An algorithmic problem for nilpotent groups and rings, Sibirsk. Mat. Zh., 20(5), 1077–1081, 1979. | MR: 559069 | Zbl: 0426.20024

[8] L. Ribes and P. Zalesskii. Profinite groups, Second edition, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics 40. Springer-Verlag, Berlin, 2010. | Zbl: 1197.20022

Cited by Sources: