Groups with irreducibly unfaithful subsets for unitary representations
Confluentes Mathematici, Volume 12 (2020) no. 1, pp. 31-68.

Let G be a group. A subset FG is called irreducibly faithful if there exists an irreducible unitary representation π of G such that π(x)id for all xF{e}. Otherwise F is called irreducibly unfaithful. Given a positive integer n, we say that G has Property 𝒫(n) if every subset of size n is irreducibly faithful. Every group has 𝒫(1), by a classical result of Gelfand and Raikov. Walter proved that every group has 𝒫(2). It is easy to see that some groups do not have 𝒫(3).

We provide a complete description of the irreducibly unfaithful subsets of size n in a countable group G (finite or infinite) with Property 𝒫(n-1): it turns out that such a subset is contained in a finite elementary abelian normal subgroup of G of a particular kind. We deduce a characterization of Property 𝒫(n) purely in terms of the group structure. It follows that, if a countable group G has 𝒫(n-1) and does not have 𝒫(n), then n is the cardinality of a projective space over a finite field.

A group G has Property 𝒬(n) if, for every subset FG of size at most n, there exists an irreducible unitary representation π of G such that π(x)π(y) for any distinct x,y in F. Every group has 𝒬(2). For countable groups, it is shown that Property 𝒬(3) is equivalent to 𝒫(3), Property 𝒬(4) to 𝒫(6), and Property 𝒬(5) to 𝒫(9). For m,n4, the relation between Properties 𝒫(m) and 𝒬(n) is closely related to a well-documented open problem in additive combinatorics.

Received:
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/cml.61
Classification: 43A65, 22D10
Keywords: Countable group, unitary representation, irreducible representation, faithful representation, factor representation, finite elementary abelian normal subgroup

Pierre-Emmanuel Caprace 1; Pierre de la Harpe 2

1 UCLouvain – IRMP, Chemin du Cyclotron 2, box L7.01.02, B-1348 Louvain-la-Neuve
2 Section de mathématiques, Université de Genève, C.P. 64, CH-1211 Genève 4
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CML_2020__12_1_31_0,
     author = {Pierre-Emmanuel Caprace and Pierre de la Harpe},
     title = {Groups with irreducibly unfaithful subsets for unitary representations},
     journal = {Confluentes Mathematici},
     pages = {31--68},
     publisher = {Institut Camille Jordan},
     volume = {12},
     number = {1},
     year = {2020},
     doi = {10.5802/cml.61},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.61/}
}
TY  - JOUR
AU  - Pierre-Emmanuel Caprace
AU  - Pierre de la Harpe
TI  - Groups with irreducibly unfaithful subsets for unitary representations
JO  - Confluentes Mathematici
PY  - 2020
SP  - 31
EP  - 68
VL  - 12
IS  - 1
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.61/
DO  - 10.5802/cml.61
LA  - en
ID  - CML_2020__12_1_31_0
ER  - 
%0 Journal Article
%A Pierre-Emmanuel Caprace
%A Pierre de la Harpe
%T Groups with irreducibly unfaithful subsets for unitary representations
%J Confluentes Mathematici
%D 2020
%P 31-68
%V 12
%N 1
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.61/
%R 10.5802/cml.61
%G en
%F CML_2020__12_1_31_0
Pierre-Emmanuel Caprace; Pierre de la Harpe. Groups with irreducibly unfaithful subsets for unitary representations. Confluentes Mathematici, Volume 12 (2020) no. 1, pp. 31-68. doi : 10.5802/cml.61. https://cml.centre-mersenne.org/articles/10.5802/cml.61/

[1] K. Bauer, D. Sen, and P. Zvengrowski, A generalized Goursat lemma. Tatra Mt. Math. Publ. 64 (2015), 1–19. | DOI | MR | Zbl

[2] B. Bekka and P. de la Harpe, Irreducibly represented groups. Comment. Math. Helv. 83 (2008), 847–868. | DOI | MR | Zbl

[3] M. Bhargava, When is a group the union of proper normal subgroups? Amer. Math. Monthly 109 (2002), no. 5, 471–473. | DOI | MR | Zbl

[4] N. Bourbaki, Algèbre, Chapitres 1 à 3. Bourbaki, 1970.

[5] N. Bourbaki, Algèbre, Chapitre VIII, Modules et anneau semi-simples. Hermann, 1958. | DOI

[6] N. Bourbaki, Théories spectrales, Chapitres 1 et 2. Hermann, 1967. | DOI

[7] W. Burnside, The theory of groups of finite order, 2nd Edition. Cambridge Univ. Press, 1911. Reprint, Dover, 1955. | DOI | Zbl

[8] Y. Bugeaud and T.N. Shorey, On the Diophantine equation x m -1 x-1=y n -1 y-1. Pacific J. Math. 207 (2002), no. 1, 61–75. | DOI | Zbl

[9] E.E. Croot, E. Samuel III, and V.F. Lev, Open problems in additive combinatorics. Amer. Math. Soc., Proc. Lecture Notes 43 (2007), 207–233. | DOI | Zbl

[10] J. Dixmier, Les C*-algèbres et leurs représentations, deuxième édition. Gauthier–Villars, 1969 [First Edition 1964, English translation North-Holland 1977].

[11] M. Fitch, and R. Jamison, Minimum sum covers of small cyclic groups. Proceedings of the Thirty-first Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2000). Congr. Numer. 147 (2000), 65–81. | Zbl

[12] L. Fuchs, Infinite abelian groups. Vol. I. Academic Press, 1970. | Zbl

[13] W. Gaschütz, Endliche Gruppen mit treuen absolut–irreduziblen Darstellungen. Math. Nach. 12 (1954), 253–255. | DOI | MR | Zbl

[14] I. Gelfand and D. Raikov, Irreducible unitary representations of locally bicompact groups. Rec. Math. [Mat. Sbornik] N.S. 13(55) (1943), 301–316. I.M. Gelfand, Collected papers, Volume II, 3–17. | DOI | Zbl

[15] R. Goormaghtigh. L’intermédiaire des Mathématiciens 24 (1917), 88.

[16] F. Greenleaf and M. Moskowitz, Cyclic vectors for representations of locally compact groups. Math. Ann. 190 (1971), 265–288. | DOI | MR | Zbl

[17] P. de la Harpe, Topics in geometric group theory. The University of Chicago Press, 2000. | Zbl

[18] B. He, A remark on the Diophantine equation x 3 -1 x-1=y n -1 y-1. Glas. Mat. Ser. III 44(64), no. 1 (2009), 1–6. | DOI | MR | Zbl

[19] B. Huppert, Character theory of finite groups. W. de Gruyter, 1998. | DOI | Zbl

[20] I.M. Isaacs, Character theory of finite groups. Academic Press, 1976. | Zbl

[21] E. Kowalski, An introduction to the representation theory of groups. Graduate Studies in Mathematics 155, Amer. Math. Soc., 2014. | DOI | Zbl

[22] J. Lambek, Lectures on rings and modules, Second Edition. Chelsea, 1976. [First Edition, Blaisdell, 1966.] | Zbl

[23] G.W. Mackey, The theory of unitary group representations. University of Chicago Press, 1976. | Zbl

[24] B.H. Neumann, Some remarks on infinite groups, J. London Math. Soc. 12 (1937), 120–127. | DOI | Zbl

[25] The On-Line Encyclopedia of Integer Sequences. On line: https://oeis.org | Zbl

[26] N. Radu, A classification theorem for boundary 2-transitive automorphisms of trees. Invent. Math. 209 (2017), no. 1, 1–60. | DOI | MR | Zbl

[27] R. Ratat. L’intermédiaire des Mathématiciens 23 (1916), 150.

[28] R. Remak, Über minimale invariante Untergruppen in der Theorie der endlichen Gruppen. J. reine angew. Math. 162 (1930), 1–16. | DOI | Zbl

[29] D.J.S. Robinson, A course in the theory of groups, Second Edition. Graduate Texts in Math. 80, Springer, 1996. | DOI

[30] Z. Sasvári, On a refinement of the Gel’fand–Raikov theorem. Math. Nachr. 150 (1991), 185–187. | DOI | MR | Zbl

[31] Z. Sasvári, Positive definite and definitizable functions. Academic Verlag, 1994. | Zbl

[32] D. Segal, Polycyclic groups. Cambridge Univ. Press, 1983. | DOI | Zbl

[33] K. Shoda, Bemerkungen über vollständig reduzible Gruppen. J. Fac. Sci., Univ. Tokyo, Sect. I 2 (1931), 203–209. | Zbl

[34] F. Szechtman, Groups having a faithful irreducible representation. J. Algebra 454 (2016), 292–307. | DOI | MR | Zbl

[35] M.E. Walter, A duality between locally compact groups and certain Banach algebras. J. Functional Analysis 17 (1974), 131–160. | DOI | MR | Zbl

Cited by Sources: