Let be a group. A subset is called irreducibly faithful if there exists an irreducible unitary representation of such that for all . Otherwise is called irreducibly unfaithful. Given a positive integer , we say that has Property if every subset of size is irreducibly faithful. Every group has , by a classical result of Gelfand and Raikov. Walter proved that every group has . It is easy to see that some groups do not have .
We provide a complete description of the irreducibly unfaithful subsets of size in a countable group (finite or infinite) with Property : it turns out that such a subset is contained in a finite elementary abelian normal subgroup of of a particular kind. We deduce a characterization of Property purely in terms of the group structure. It follows that, if a countable group has and does not have , then is the cardinality of a projective space over a finite field.
A group has Property if, for every subset of size at most , there exists an irreducible unitary representation of such that for any distinct in . Every group has . For countable groups, it is shown that Property is equivalent to , Property to , and Property to . For , the relation between Properties and is closely related to a well-documented open problem in additive combinatorics.
Accepted:
Revised after acceptance:
Published online:
Keywords: Countable group, unitary representation, irreducible representation, faithful representation, factor representation, finite elementary abelian normal subgroup
Pierre-Emmanuel Caprace 1; Pierre de la Harpe 2
@article{CML_2020__12_1_31_0, author = {Pierre-Emmanuel Caprace and Pierre de la Harpe}, title = {Groups with irreducibly unfaithful subsets for unitary representations}, journal = {Confluentes Mathematici}, pages = {31--68}, publisher = {Institut Camille Jordan}, volume = {12}, number = {1}, year = {2020}, doi = {10.5802/cml.61}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.61/} }
TY - JOUR AU - Pierre-Emmanuel Caprace AU - Pierre de la Harpe TI - Groups with irreducibly unfaithful subsets for unitary representations JO - Confluentes Mathematici PY - 2020 SP - 31 EP - 68 VL - 12 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.61/ DO - 10.5802/cml.61 LA - en ID - CML_2020__12_1_31_0 ER -
%0 Journal Article %A Pierre-Emmanuel Caprace %A Pierre de la Harpe %T Groups with irreducibly unfaithful subsets for unitary representations %J Confluentes Mathematici %D 2020 %P 31-68 %V 12 %N 1 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.61/ %R 10.5802/cml.61 %G en %F CML_2020__12_1_31_0
Pierre-Emmanuel Caprace; Pierre de la Harpe. Groups with irreducibly unfaithful subsets for unitary representations. Confluentes Mathematici, Volume 12 (2020) no. 1, pp. 31-68. doi : 10.5802/cml.61. https://cml.centre-mersenne.org/articles/10.5802/cml.61/
[1] K. Bauer, D. Sen, and P. Zvengrowski, A generalized Goursat lemma. Tatra Mt. Math. Publ. 64 (2015), 1–19. | DOI | MR | Zbl
[2] B. Bekka and P. de la Harpe, Irreducibly represented groups. Comment. Math. Helv. 83 (2008), 847–868. | DOI | MR | Zbl
[3] M. Bhargava, When is a group the union of proper normal subgroups? Amer. Math. Monthly 109 (2002), no. 5, 471–473. | DOI | MR | Zbl
[4] N. Bourbaki, Algèbre, Chapitres 1 à 3. Bourbaki, 1970.
[5] N. Bourbaki, Algèbre, Chapitre VIII, Modules et anneau semi-simples. Hermann, 1958. | DOI
[6] N. Bourbaki, Théories spectrales, Chapitres 1 et 2. Hermann, 1967. | DOI
[7] W. Burnside, The theory of groups of finite order, 2nd Edition. Cambridge Univ. Press, 1911. Reprint, Dover, 1955. | DOI | Zbl
[8] Y. Bugeaud and T.N. Shorey, On the Diophantine equation . Pacific J. Math. 207 (2002), no. 1, 61–75. | DOI | Zbl
[9] E.E. Croot, E. Samuel III, and V.F. Lev, Open problems in additive combinatorics. Amer. Math. Soc., Proc. Lecture Notes 43 (2007), 207–233. | DOI | Zbl
[10] J. Dixmier, Les C*-algèbres et leurs représentations, deuxième édition. Gauthier–Villars, 1969 [First Edition 1964, English translation North-Holland 1977].
[11] M. Fitch, and R. Jamison, Minimum sum covers of small cyclic groups. Proceedings of the Thirty-first Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2000). Congr. Numer. 147 (2000), 65–81. | Zbl
[12] L. Fuchs, Infinite abelian groups. Vol. I. Academic Press, 1970. | Zbl
[13] W. Gaschütz, Endliche Gruppen mit treuen absolut–irreduziblen Darstellungen. Math. Nach. 12 (1954), 253–255. | DOI | MR | Zbl
[14] I. Gelfand and D. Raikov, Irreducible unitary representations of locally bicompact groups. Rec. Math. [Mat. Sbornik] N.S. 13(55) (1943), 301–316. I.M. Gelfand, Collected papers, Volume II, 3–17. | DOI | Zbl
[15] R. Goormaghtigh. L’intermédiaire des Mathématiciens 24 (1917), 88.
[16] F. Greenleaf and M. Moskowitz, Cyclic vectors for representations of locally compact groups. Math. Ann. 190 (1971), 265–288. | DOI | MR | Zbl
[17] P. de la Harpe, Topics in geometric group theory. The University of Chicago Press, 2000. | Zbl
[18] B. He, A remark on the Diophantine equation . Glas. Mat. Ser. III 44(64), no. 1 (2009), 1–6. | DOI | MR | Zbl
[19] B. Huppert, Character theory of finite groups. W. de Gruyter, 1998. | DOI | Zbl
[20] I.M. Isaacs, Character theory of finite groups. Academic Press, 1976. | Zbl
[21] E. Kowalski, An introduction to the representation theory of groups. Graduate Studies in Mathematics 155, Amer. Math. Soc., 2014. | DOI | Zbl
[22] J. Lambek, Lectures on rings and modules, Second Edition. Chelsea, 1976. [First Edition, Blaisdell, 1966.] | Zbl
[23] G.W. Mackey, The theory of unitary group representations. University of Chicago Press, 1976. | Zbl
[24] B.H. Neumann, Some remarks on infinite groups, J. London Math. Soc. 12 (1937), 120–127. | DOI | Zbl
[25] The On-Line Encyclopedia of Integer Sequences. On line: https://oeis.org | Zbl
[26] N. Radu, A classification theorem for boundary -transitive automorphisms of trees. Invent. Math. 209 (2017), no. 1, 1–60. | DOI | MR | Zbl
[27] R. Ratat. L’intermédiaire des Mathématiciens 23 (1916), 150.
[28] R. Remak, Über minimale invariante Untergruppen in der Theorie der endlichen Gruppen. J. reine angew. Math. 162 (1930), 1–16. | DOI | Zbl
[29] D.J.S. Robinson, A course in the theory of groups, Second Edition. Graduate Texts in Math. 80, Springer, 1996. | DOI
[30] Z. Sasvári, On a refinement of the Gel’fand–Raikov theorem. Math. Nachr. 150 (1991), 185–187. | DOI | MR | Zbl
[31] Z. Sasvári, Positive definite and definitizable functions. Academic Verlag, 1994. | Zbl
[32] D. Segal, Polycyclic groups. Cambridge Univ. Press, 1983. | DOI | Zbl
[33] K. Shoda, Bemerkungen über vollständig reduzible Gruppen. J. Fac. Sci., Univ. Tokyo, Sect. I 2 (1931), 203–209. | Zbl
[34] F. Szechtman, Groups having a faithful irreducible representation. J. Algebra 454 (2016), 292–307. | DOI | MR | Zbl
[35] M.E. Walter, A duality between locally compact groups and certain Banach algebras. J. Functional Analysis 17 (1974), 131–160. | DOI | MR | Zbl
Cited by Sources: