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GROUPS WITH IRREDUCIBLY UNFAITHFUL SUBSETS
FOR UNITARY REPRESENTATIONS

PIERRE-EMMANUEL CAPRACE AND PIERRE DE LA HARPE

Abstract. Let G be a group. A subset F ⊂ G is called irreducibly faithful if there exists an
irreducible unitary representation π of G such that π(x) 6= id for all x ∈ F r {e}. Otherwise
F is called irreducibly unfaithful. Given a positive integer n, we say that G has Property
P(n) if every subset of size n is irreducibly faithful. Every group has P(1), by a classical
result of Gelfand and Raikov. Walter proved that every group has P(2). It is easy to see
that some groups do not have P(3).

We provide a complete description of the irreducibly unfaithful subsets of size n in a
countable group G (finite or infinite) with Property P(n−1): it turns out that such a subset
is contained in a finite elementary abelian normal subgroup of G of a particular kind. We
deduce a characterization of Property P(n) purely in terms of the group structure. It follows
that, if a countable group G has P(n− 1) and does not have P(n), then n is the cardinality
of a projective space over a finite field.

A group G has Property Q(n) if, for every subset F ⊂ G of size at most n, there exists
an irreducible unitary representation π of G such that π(x) 6= π(y) for any distinct x, y in F .
Every group has Q(2). For countable groups, it is shown that Property Q(3) is equivalent
to P(3), Property Q(4) to P(6), and Property Q(5) to P(9). For m,n > 4, the relation
between Properties P(m) and Q(n) is closely related to a well-documented open problem in
additive combinatorics.

Fidèle, infidèle ?
Qu’est-ce que ça fait,
Au fait ?
Puisque toujours dispose à couronner mon zèle
Ta beauté sert de gage à mon plus cher souhait.

(Paul Verlaine, Chansons pour elle, 1891.)
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1. Introduction

1.1. Irreducibly unfaithful subsets. A subset F of a group G is called irre-
ducibly faithful if there exists an irreducible unitary representation π of G in a
Hilbert space H such that π(x) 6= id for all x ∈ F with x 6= e. (We denote by e
the identity element of the group, and by id the identity operator on the space H.)
Otherwise F is called irreducibly unfaithful. For n > 1, we say that G has
Property P(n) if every subset of size at most n is irreducibly faithful.

Every group has Property P(1): this is the particular case for discrete groups
of a foundational result established for all locally compact groups and continuous
unitary representations by Gelfand and Raikov [14] (see also the exposition in [10,
13.6.6], and another proof for second-countable locally compact groups in [23, Pages
109–110]).

The following refinement of the Gelfand–Raikov Theorem is due to Walter: Every
group has Property P(2). In other words, in a group, every couple is irreducibly
faithful (!). See [35, Proposition 2], as well as [30] and [31, 1.8.7].

It is clear that Property P(3) does not hold for all groups. Indeed, Klein’s
Vierergruppe, the direct product C2 × C2 of two copies of the group of order 2,
does not have P(3).

The property P(n) has been considered by Walter [35] for n 6 3 (but without
our terminology). As far as we know, it has not been considered for larger values
of n.

The first goal of this article is to characterize groups with P(n) for all n > 3. We
focus on countable groups, i.e., groups that are either finite or countably infinite.
What follows can be seen as a quantitative refinement of results in [2], quoted in
Theorem 2.2 below.

Before stating our main result, we need the following preliminaries. Let k be a
finite field of order q; in case q = p is a prime, we write Fp instead of k. For a
group G, we denote by k[G] its group algebra over k. We recall that any abelian
group U whose exponent is a prime p carries the structure of a vector space over Fp,
which is invariant under all group automorphisms of U . In other words, the group
structure on U canonically determines an Fp-linear structure. In particular, an
abelian normal subgroup U of exponent p in a groupGmay be viewed, in a canonical
way, as an Fp[G]-module. Moreover, U is minimal as a normal subgroup of G if
and only if U is simple as an Fp[G]-module. (We rather use W instead of U when
such a simple module appears below, and V for direct sums of particular numbers
of copies of simple modules.)

Let G be a group and U an Fp[G]-module. The centralizer of U is the Fp-
algebra

LFp[G](U) = {α ∈ EndFp
(U) | g.α(u) = α(g.u) for all g ∈ G, u ∈ U}.

If W is a simple Fp[G]-module, Schur’s lemma ensures that LFp[G](W ) is a division
algebra over Fp [5, § 4, Proposition 2]. If in addition W is finite, then the algebra
LFp[G](W ) is a finite field extension of Fp, by Wedderburn’s Theorem [5, § 11,
no. 1]. In this case, W is a vector space over LFp[G](W ), and the dimension of
W over LFp[G](W ) is the quotient of dimFp

(W ) by the degree of the extension
LFp[G](W ) of Fp.
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For example, consider a finite field extension k of Fp, a positive integer m, the
vector space W = km, and the general linear group GL(W ) = GLm(k) together
with its natural action on W . View W as a vector space over Fp, and as an
Fp[GL(W )]-module. Then LFp[GL(W )](W ) and k can be identified, and dimk(W ) =
m.

Our main result reads as follows; the proof is in Section 4.

Theorem 1.1. — Let G be a countable group and n a positive integer. The
following assertions are equivalent.

(1) G does not have P(n).
(2) There exist a prime p, a finite normal subgroup V in G which is an elemen-

tary abelian p-group, and a finite simple Fp[G]-module W , such that the
following properties hold, where k denotes the centralizer field LFp[G](W ),
m = dimk(W ), and q = |k|:
(i) V is isomorphic to the direct sum of m+ 1 copies of W , as an Fp[G]-

module;
(ii) q is a power of p and qm + qm−1 + · · ·+ q + 1 6 n.

Notice that the inequality qm+qm−1+· · ·+q+1 > 3 always holds, since q > p > 2
and m > 1. Therefore, in the particular cases of n = 1 and n = 2, Theorem 1.1
recovers for countable groups the results of Gelfand–Raikov and Walter quoted
above. In the particular case of n = 3, the theorem shows that the only obstruction
to P(3) can be expressed in terms of Klein’s Vierergruppe:

Corollary 1.2. — A countable group has P(3) if and only if its centre does
not contain any subgroup isomorphic to C2 × C2.

Proof. — For n = 3, we have p = q = 2 and m = 1 in (2) of Theorem 1.1. Hence
V = W ⊕W is an F2[G]-module of dimension 2 over F2. Moreover, the action of
G is trivial on W , therefore also on V . This means that, as a normal subgroup of
G, the group V is central. �

Corollary 1.3. — Let n be a positive integer and G a countable group. As-
sume that every minimal finite abelian normal subgroup of G is central.

Then G does not have P(n) if and only if G contains a central subgroup isomor-
phic to Cp × Cp for some prime p 6 n− 1.

In the following proof, and later, we denote by T the group of complex numbers
of modulus one. Recall that, for any irreducible unitary representation π of a group
G with centre Z on a Hilbert space H, there exists by Schur’s Lemma a unitary
character χ : Z → T such that π(g) = χ(g)id for every g ∈ Z.

Proof. — Suppose that G does not have Property P(n). Let p be a prime and
V,W as in Assertion (2) of Theorem 1.1. Since the action by conjugation of G on
minimal finite abelian normal subgroups is trivial by hypothesis, the Fp[G]-module
W , which is simple, is of dimension 1 over Fp. With the notation of Theorem 1.1,
this implies that m = 1 and k = Fp. It follows that V = W ⊕W ∼= Cp × Cp.

Conversely, if G contains a central subgroup V isomorphic to Cp × Cp for some
prime p 6 n − 1, consider a subset F of G of size p + 1 containing a generator
of each of the p + 1 non-trivial cyclic subgroups of V . As recalled just before
the present proof, every irreducible unitary representation of G provides a unitary
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character χ : Cp × Cp → T. Since every finite subgroup of T is cyclic, we have
F ∩Kerχ 6⊂ {e}, hence F is irreducibly unfaithful. �

Example 1.4. — There are several classes of groups which have the property that
“every minimal finite abelian normal subgroup is central”:

(1) Torsion-free groups have the property.
(2) Icc-groups, that is infinite groups in which all conjugacy classes distinct

from {e} are infinite, have the property.
(3) A group G without non-trivial finite quotient has the property. Indeed, if

N is a finite normal subgroup of G, the action by conjugation of G on N
provides a homomorphism from G to the group of automorphisms of N ;
since this homomorphism is trivial by hypothesis, N is central.

(4) In a connected algebraic group G, a Zariski-dense subgroup Γ has the prop-
erty. To check this, it suffices to show that the FC-centre FC(Γ) of Γ co-
incides with the centre of Γ. Recall that the FC-centre of a group is the
characteristic subgroup consisting of elements which have a finite conjugacy
class; the FC-centre of a group contains every finite normal subgroup.

Recall that the centraliser of an element in an algebraic group is a Zariski-
closed subgroup. Given γ ∈ FC(Γ), the centralizer CG(γ) is Zariski-closed
and contains a finite index subgroup of Γ. Since Γ is Zariski-dense, it
follows that CG(γ) is of finite index in G. Therefore CG(γ) = G since G
is connected. Hence γ is in the centre Z(G) of G. It follows that γ ∈
Γ∩Z(G) = Z(Γ). This shows that FC(Γ) is central in Γ, and consequently
that every finite normal subgroup of Γ is central.

In particular, this applies to all lattices in connected semi-simple groups
over non-discrete locally compact fields without compact factors, by the
Borel Density Theorem.

(5) A nilpotent group has the property, because any non-trivial normal sub-
group of a nilpotent group has a non-trivial intersection with the centre [4,
Chap. I, § 6, no. 3].

Theorem 1.1 also has the following immediate consequence:

Corollary 1.5. — Let n be an integer, n > 2. Suppose that there is no prime
power q and integer m > 1 such that n = qm + qm−1 + · · ·+ q + 1.

Every countable group that has P(n− 1) also has P(n).

When n = qm + qm−1 + · · ·+ q + 1, we have the following.

Example 1.6. — Consider a prime p, a power q of p, an integer m > 1, a
field k of order q, the vector space W = km, and the group GL(W ) = GLm(k).
Let V0, V1, . . . , Vm be m + 1 copies of W . The group GL(W ) acts diagonally on
V :=

⊕m
i=0 Vi. Since V is an elementary abelian p-group, it can be viewed as an

Fp[GL(W )]-module. Define the semi-direct product group
G(q,m) = GL(W )n V.

Let N be a normal subgroup of G(q,m). Assume that N ∩ V = {e}. On the
one hand, N commutes with V , hence acts trivially on V by conjugation. On
the other hand, the triviality of N ∩ V implies that N maps injectively in the
quotient G(q,m)/V ∼= GL(W ), whose conjugation action on V is faithful. Hence
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N = {e}. This shows that every non-trivial normal subgroup of G(q,m) has a non-
trivial intersection with V . In particular, every minimal normal subgroup of G(q,m)
is contained in V , and thus is abelian. Hence it corresponds to a simple Fp[G(q,m)]-
submodule of V . Therefore, every minimal abelian normal subgroup of G(q,m) is
isomorphic to W as an Fp[G(q,m)]-module.

We now set n = qm + qm−1 + · · ·+ q+ 1. Then Theorem 1.1 implies that G(q,m)
has Property P(n− 1) but not P(n).

Notice that the group G(q,1) is the semi-direct product k× n (k ⊕ k), where k
is a field of order q. The group G(2,1) is Klein’s Vierergruppe. The group G(3,1)
appears in [7, Note F] as an example of a finite group with trivial centre which
does not admit any faithful irreducible representation. The group G(4,1) appears in
[20, Problem 2.19] for the same reason. Our groups G(q,1) appear in the historical
review section of [34], where they are denoted by G(2, q). The tables

q 2 3 4 5 7 8 9 11
|G(q,1)| 4 18 48 100 294 448 649 1110

and
q 2 3

|G(q,2)| 384 34992
give the orders of the 8 smallest groups G(q,1) and the 2 smallest groups G(q,2).

Numerical note 1.7. — The sequence of positive integers which are of the
form qm + qm−1 + ... + q + 1 for some prime power q and positive integer m is
Sequence A258777 of [25]; the first 25 terms are

3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 17, 18, 20, 21, 24, 26, 28, 30, 31, 32, 33, 38, 40

(note that we start with 3 whereas A258777 starts with 1). The first 10 000
terms appear on https://oeis.org/A258777/b258777.txt where the last term
is 101 808. For terms below 100, the largest gap is between the 45th term and the
46th term, i.e., between 91 and 98; it follows from Corollary 1.5 that a group with
Property P(91) has necessarily Property P(97).

It is a consequence of the Prime Number Theorem that the asymptotic density of
this sequence is 0. In other words, if for k > 1 we denote by R(k) the number of pos-
itive integers less than k which are terms of this sequence, then limk→∞R(k)/k = 0.
See [26, Appendix B].

Note also that the 21st term, which is 31, can be written in two ways justifying
its presence in the sequence: 31 = 24 +23 +22 +2+1 = 52 +5+1. It is a conjecture
that there are no other terms with this property, but this is still open. Indeed,
conjecturally, the Goormaghtigh equation

xM − 1
x− 1 = yN − 1

y − 1

has no solution in integers x, y,M,N such that x, y > 2, x 6= y, and M,N >
3, except 31 = 25−1

2−1 = 52−1
5−1 and 8191 = 213−1

2−1 = 903−1
90−1 . We are grateful to

Emmanuel Kowalski and Yann Bugeaud for information on the relevant literature,
which includes [27, 15, 8, 18].

https://oeis.org/A258777/b258777.txt
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In a group which has P(n − 1) and not P(n), irreducibly unfaithful subsets of
size n are contained in finite normal subgroups of a very particular kind, described
in Theorem 4.5. Here is a partial statement of this theorem:

Proposition 1.8. — Let G be a countable group and n a positive integer.
Assume that G has Property P(n − 1). Let F be a finite subset of G of size n
which is irreducibly unfaithful, and let U denote the smallest normal subgroup of
G containing F .

Then there exists a prime p such that U is a finite elementary abelian p-group,
and U is contained in the mini-socle MA(G) (as defined in Subsection 2.1 below).

1.2. Irreducibly faithful groups. A group is irreducibly faithful if it has a
faithful irreducible unitary representation. Clearly, an irreducibly faithful group
G has P(n) for all n > 1. The problem of characterizing finite groups which are
irreducibly faithful has been addressed by Burnside in [7, Note F], where a sufficient
condition is given. Since then, various papers have been published on the subject,
providing various answers to Burnside’s question; see the historical review in [34].

Gaschütz [13] obtained a short proof of the following simple criterion: a finite
groupG admits a faithful irreducible representation over an algebraically closed field
of characteristic 0 if and only if the abelian part of the socle of G is generated by a
single conjugacy class. For unitary representations, this result has been extended
to the class of all countable groups in [2, Theorem 2]; see Subsection 2.1 below.
As a consequence of Theorem 1.1, we shall obtain the following supplementary
characterization (see also Item (iv) in Corollary 5.2).

Corollary 1.9. — For a countable groupG, the following conditions are equiv-
alent:

(i) G has a faithful irreducible unitary representation.
(ii) G has P(n) for all n > 1.
(iii) For any prime p, the group G does not contain any finite abelian normal

subgroup V of exponent p with the following properties: there exists a finite
simple Fp[G]-module W , with associated centralizer k = LFp[G](W ) and
dimension m = dimk(W ), such that V is isomorphic as an Fp[G]-module
to the direct sum of m+ 1 copies of W .

In the case of finite groups, the equivalence between (i) and (ii) is trivial, while
the equivalence between (i) and (iii) is due to Akizuki (see [33, Page 207]).

Let G be a countable group in which every minimal finite abelian normal sub-
group is central (see Corollary 1.3). For such a group, Condition (iii) above can be
reformulated as follows.

(iii′) The group G does not contain any central subgroup isomorphic to Cp×Cp
for some prime p.

For uncountable groups, some of the equivalences of Corollary 1.9 may fail. See
Remark 1.13.

1.3. Abelian groups. Corollary 1.3 applies in particular to countable abelian
groups. The following Proposition 1.11 shows that the conclusion holds for all
abelian groups, countable or not. Our proof does not rely on Theorem 1.1, but uses
the following result of Mira Bhargava, which is Theorem 4 of [3].
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Theorem 1.10 (Mira Bhargava). — For any group G and any natural number
n, the following conditions are equivalent:

(i) G is the union of n proper normal subgroups.
(ii) G has a quotient isomorphic to Cp × Cp, for some prime p 6 n− 1.

Proposition 1.11. — Let n be a positive integer and let G be an abelian group.
Then G does not have P(n) if and only if G contains a subgroup isomorphic to

Cp × Cp for some prime p 6 n− 1.

Proof. — Assume that G does not have Property P(n). Let F ⊂ G r {e} be
an irreducibly unfaithful subset of G of size 6 n. Let Ĝ be the Pontryagin dual
of G, namely the group of all unitary characters G → T. For each x ∈ F , let
Hx = {χ ∈ Ĝ | χ(x) = 1}; it is a subgroup of Ĝ. Since G has P(1), we have
Hx 6= Ĝ. Since F is irreducibly unfaithful we have Ĝ =

⋃
x∈F Hx. Since Ĝ is

abelian, every subgroup is normal, and Theorem 1.10 ensures that Ĝ maps onto
Cp×Cp, for some prime p 6 |F | − 1 6 n− 1. By duality (see [6, chap. II, § 1, no 7,
Th. 4]), it follows that G contains a subgroup isomorphic to the dual of Cp × Cp,
i.e., a subgroup isomorphic to Cp × Cp itself.

The proof of the converse implication is as in the proof of Corollary 1.3. �

It is easy to characterize abelian groups having faithful unitary characters, i.e.,
having faithful irreducible unitary representations. We denote by c the cardinality
of the continuum, i.e., of T.

Proposition 1.12. — For an abelian group G, the following conditions are
equivalent:

(i) G has a faithful unitary character, i.e., G is isomorphic to a subgroup of T.
(ii) The cardinality of G is at most c, and no subgroup of G is isomorphic to

Cp × Cp, for any prime p.

For a proof, see Subsection 2.6.

Remark 1.13. — Corollary 1.9 does not extend to groups of cardinality larger
than c. Indeed, by Proposition 1.11, any torsion-free abelian group has P(n) for all
n > 0 (Condition (ii) of Corollary 1.9), but cannot be isomorphic to a subgroup of
T when its cardinality is larger than c (negation of Property (i) of Corollary 1.9).

We have not been able to decide whether Conditions (i) and (ii) of Corollary 1.9
are equivalent for all groups of cardinality at most c. They are for abelian groups
of cardinality at most c, this is Proposition 1.12.

Conditions (ii) and (iii) of Corollary 1.9 are equivalent for any abelian group,
this is Proposition 1.11.

1.4. Irreducible versus factor representations. Recall that two unitary rep-
resentations π, π′ of a group G are called disjoint if there do not exist non-zero
subrepresentations ρ of π and ρ′ of π′ which are equivalent. A unitary representation
π of a group G is called a factor representation (or a primary representa-
tion) if it cannot be decomposed as the direct sum of two disjoint subrepresenta-
tions. Equivalently the unitary representation π is a factor representation if the
von Neumann algebra generated by π(G) is a factor. Every irreducible unitary rep-
resentation is a factor representation. The direct sum of several copies of a given
irreducible unitary representation is an example of a factor representation which is
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not irreducible. However, some factor representations do not contain any irreducible
subrepresentations. The notion of factor representation plays a key role in the the-
ory of unitary representations on infinite-dimensional Hilbert spaces, see [10] and
[23]. We record here the following observation, which implies that the results above
remain unchanged if one replaces the class of irreducible unitary representations by
the larger class of factor representations (proof in Subsection 2.4).

Proposition 1.14. — Let G be a countable group. For any factor represen-
tation π of G, there is an irreducible unitary representation σ of G such that
Ker(σ) = Ker(π).

In particular, a countable group is irreducibly faithful if and only if it is factorially
faithful.

1.5. Irreducibly injective subsets. A natural variation on the notion of irre-
ducible (un)faithfulness can be defined as follows.

A subset F of a group G is called irreducibly injective if G has an irreducible
unitary representation π such that the restriction π|F of π to F is injective. We say
that G has Property Q(n) if every subset of G of size 6 n is irreducibly injective. It
is a tautology that every group has Property Q(1). Clearly, an irreducibly faithful
group G has Q(n) for all n > 1.

Though we do not know a characterization of countable groups which have Prop-
erty Q(n) for a given n in terms of the group structure (unless n 6 5), some of the
results we show in Section 5 can be summarized as follows.

Proposition 1.15. — Let G be a countable group and n a positive integer.
(i) If G has P

((
n
2
))
, then G has Q(n); in particular, every countable group

has Q(2).
(ii) If G has Q(n), then G has P(n).
(iii) G has Q(3) if and only if G has P(3).
(iv) G has Q(4) if and only if G has P(6).
(v) G has Q(5) if and only if G has P(9).

Understanding Property Q(n) for larger n is closely related to a well-documented
open problem in additive combinatorics. See Subsection 5.5.

We are grateful to Yves Cornulier for his comments on a previous version of our
text.

2. Irreducibly faithful groups and related facts

2.1. Feet, mini-feet and Gaschütz’ Theorem. Theorem 2.2 below is due to
Gaschütz in the case of finite groups [13] (see also [19, Theorem 42.7]), and has
been generalized to countable groups in [2, part of Theorem 2]. First we recall
some terminology.

In a group G, a mini-foot is a minimal non-trivial finite normal subgroup; we
denote byMG the set of all mini-feet of G. The mini-socle of G is the subgroup
MS(G) generated by

⋃
M∈MG

M ; the mini-socle is {e} ifMG is empty, for example
MS(Z) = {0}.

Let AG denote the subset ofMG of abelian mini-feet, and HG the complement
of AG in MG. The abelian mini-socle of G is the subgroup MA(G) generated
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by
⋃
A∈AG

A, and the semi-simple part MH(G) of the mini-socle is the subgroup
generated by

⋃
H∈H(G)H. For examples of MA(G), see 2.4 below.

In the context of finite groups, mini-foot and mini-socle are respectively called
foot and socle. We denote the socle of a finite group G by Soc(G), the abelian
socle by SocA(G), and the semi-simple part of the socle by SocH(G). The structure
of the socle is due to Remak [28].

For general groups, finite or not, the structure of the mini-socle can be described
similarly, as follows. We write

∏′
ι∈I Gι for the restricted sum of a family of groups

(Gι)ι∈I ; recall that it is the subgroup of the direct product consisting of elements
(gι)ι∈I ∈

∏
ι∈I Gι such that gι is the identity of Gι for all but finitely many ι ∈ I.

Proposition 2.1. — Let G be a group. Let MG, MS(G), AG, MA(G), HG
and MH(G) be as above.

(1) Every abelian mini-foot A in AG is an elementary abelian p-group (Fp)m
for some prime p and positive integer m.

(2) There exists a subset A′G of AG such that MA(G) =
∏′
A∈A′

G
A. In partic-

ular MA(G) is abelian.
(3) Every non-abelian mini-foot H in HG is a direct product of a finite number

of isomorphic non-abelian simple groups, conjugate with each other in G.
(4) MH(G) is the restricted sum

∏′
H∈HG

H of the mini-feet in HG.
(5) MS(G) is the direct product MA(G)×MH(G).
(6) Each of the subgroups MS(G), MA(G), MH(G) is characteristic (in partic-

ular normal) in G.
(7) Let r : G� Q be a surjective homomorphism of G onto a group Q. Then,

for every mini-foot X of G, either r(X) is trivial or r(X) is a mini-foot of Q.
In particular r maps MA(G) [respectively MH(G), MS(G)] to a subgroup
of MA(Q) [respectively MH(Q), MS(Q)] which is normal in Q.

We refer to [2, Proposition 1] for the proof.
The next result is a slight reformulation of the equivalence between (i) and (iv)

in [2, Theorem 2].

Theorem 2.2. — For a countable group G, the following assertions are equiv-
alent.

(i) G has a faithful irreducible unitary representation.
(ii) Every finite normal subgroup of G contained in the abelian mini-socle is

generated by a single conjugacy class.

This result is a crucial tool for the proof of Theorem 1.1. Moreover, we shall
also need subsidiary facts that we will extract from [2]. They will be presented in
Section 2.4 below.

2.2. On characteristic subgroups that are directed unions of finite normal
subgroups. The next lemma, whose straightforward proof is left to the reader,
ensures that every group has a unique largest normal subgroup that is the directed
union of all its finite normal subgroups [respectively all its soluble finite normal
subgroups]. In particular these subgroups are characteristic.

For an element g ∈ G and a subset F ⊂ G, we denote by 〈〈g〉〉G the normal
subgroup of G generated by {g}, and by 〈〈F 〉〉G that generated by F .
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Lemma 2.3. — Let G be a group.
(i) Let k be a positive integer and N1, . . . , Nk finite normal subgroups of G.

The subgroup of G generated by
⋃k
j=1Nj is the product N1N2 . . . Nk, in

particular it is a finite normal subgroup of G.
(ii) The subset

W(G) = {g ∈ G | the normal subgroup 〈〈g〉〉G is finite}
is a characteristic subgroup of G, and is the directed union of all finite
normal subgroups of G.

(iii) The subset
Fsol(G) = {g ∈ G | the normal subgroup 〈〈g〉〉G is finite and soluble}

is a characteristic subgroup of G, and is the directed union of all soluble
finite normal subgroups of G.

The FC-centre FC(G) has been defined in Example 1.4. The characteristic sub-
group W(G) is the torsion FC-centre of G. According to Dicman’s Lemma [29,
14.5.7], which ensures that every element of finite order in the FC-centre of G has
a finite normal closure, W(G) is also the set of elements of finite order in FC(G).
The inclusions

MA(G) 6 Fsol(G) 6W(G) 6 FC(G)
and

MS(G) 6W(G)
follow from the definitions.

We illustrate those notions by discussing several examples.

Example 2.4 (Abelian mini-socles and other characteristic subgroups). —
(1) Let p be a prime. In the cyclic group Z/p2Z, the abelian socle Z/pZ (which

is also the socle) is a proper subgroup of Fsol(Z/p2Z) = Z/p2Z.
More generally, for a torsion abelian group G, the abelian mini-socle

(which is also the mini-socle) is generated by the elements of prime order,
while Fsol(G) = G.

(2) If G is the restricted sum of an infinite family (Gn)n>1 of soluble finite
groups, then Fsol(G) is the whole group G; note that Fsol(G) is soluble if
and only if the supremum over all n of the derived length of Gn is finite.

If G is a finite group, then Fsol(G) is the largest soluble normal subgroup
of G, known as the soluble radical of G.

(3) Let G be a torsion-free group. Then W(G) = {e}, so that MA(G) =
MS(G) = Fsol(G) = {e}.

(4) Let G be a group for which Assertion (2) in Theorem 1.1 holds true. Then,
with the notation of this Theorem, the finite normal subgroup V of G is
contained in the abelian mini-socle MA(G).

(5) Let p be a prime, d an integer, d > 2, and q = pd. Let Cq be the cyclic
group Z/qZ; denote by cq ∈ Cq the class modulo qZ of an integer c ∈ Z.
Let Hq be the group of triples (a, b, c) ∈ Z×Z×Cq with the multiplication
defined by

(a, b, c)(a′, b′, c′) = (a+ a′, b+ b′, c+ c′ + (ab′)q).
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We identify the cyclic group Cp of order p with a subgroup of Cq, and the
group Cq to the subgroup of Hq of triples of the form (0, 0, c). Observe
that all conjugacy classes in Hq are finite, i.e., Hq is its own FC-centre (it
is a so-called FC-group). Moreover, the torsion FC-centreW (Hq) coincides
with the central subgroup Cq of Hq, and also with Fsol(Hq). The following
five subgroups of Hq constitute a strictly ascending chain of characteristic
subgroups:

the trivial group {e},
the mini-socle MS(Hq) = MA(Hq) = Cp,
the group Fsol(Hq) = W(Hq) = Cq,
the centre qZ× qZ× Cq,
and the group Hq itself.

(6) Let G be a non-trivial nilpotent group. Since minimal normal subgroups of
G are central, as recalled in Example 1.4(5), it follows that the mini-socle
of G is the subgroup generated by the central elements of prime order.

Recall also that the set τ(G) of elements of finite order in G is a subgroup
of G, indeed a characteristic subgroup, and that G/τ(G) is torsion-free.
When G is moreover finitely generated then τ(G) is finite [32, Chapter 1,
Corollary 10].

It follows that, for a finitely generated nilpotent group G, we have
Fsol(G) = W(G) = τ(G), and W(G/W(G)) = {e}. The next example
shows that the finite generation condition cannot be deleted.

(7) For each integer n > 1, let

Hn = 〈xn, yn, zn | x3
n, y

3
n, [xn, yn]z−1

n , [xn, zn], [yn, zn]〉

be a copy of the Heisenberg group over the field F3. We form the full direct
product P =

∏
n>1Hn and, for each n, we identify xn, yn, and zn with

their natural images in P . We also set x = (xn)n>1 ∈ P , and define

G = 〈x, yn | n > 1〉 6 P.

The group G is countable, of exponent 3, and nilpotent of class 2. Observe
that zn = [x, yn] is in G for all n > 1.

For n > 1, let An be the group generated by yn and zn. It is an abelian
3-group of order 9, which is normal in each of Hn, P , and G. Let A be the
subgroup of G generated by

⋃
n>1An, which is normal in G. Observe that

G/A is a cyclic group of order 3, generated by the class of x modulo A.
We have A 6 Fsol(G). Indeed, let t = (tn)n>1 ∈ A. There exists C > 1

such that tn = e whenever n > C, so that t is in the normal subgroup∏C
n=1An of G, which is finite and abelian. Hence t ∈ Fsol(G).
For all n > 1, we have [x, yn] = zn ∈ G, so that the normal subgroup

〈〈x〉〉G generated by x contains {zn | n > 1}, and thus is infinite. It follows
that x is not in the FC-centre of G, and in particular that x is not in
Fsol(G).

We have shown that A = Fsol(G) � G, and that G/Fsol(G) is a cyclic
group of order 3. In particular, Fsol

(
G/Fsol(G)

)
= G/Fsol(G) ∼= C3 is not

trivial.
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Since W(−) and Fsol(−) coincide for G and its quotients (indeed for any
soluble group), this can be written A = W(G) � G and W(G/W(G)) =
G/W(G) ∼= C3.

The last example shows that Fsol(G) does not behave as a radical in general, in
the sense that Fsol(G/Fsol(G)) can be non-trivial. Similarly W (G/W(G)) can be
non-trivial. However, it is easy to see that, if W(G) is finite [respectively Fsol(G)
is finite], then W(G/W(G)) = {e} [respectively Fsol(G/Fsol(G)) = {e}].

The following proposition will be used in Remark 2.19(2).

Proposition 2.5. — For any two groups G1 and G2, we have:
(i) MS(G1 ×G2) = MS(G1)×MS(G2).
(ii) MA(G1 ×G2) = MA(G1)×MA(G2).
(iii) Fsol(G1 ×G2) = Fsol(G1)× Fsol(G2).
(iv) W(G1 ×G2) = W(G1)×W(G2).

Proof. — We identify G1 and its subgroups with subgroups of G1 × G2, and
similarly for G2 and its subgroups. For j ∈ {1, 2}, we denote by ej the neutral
element of Gj and by rj : G1 ×G2 � Gj the canonical projection.

(i) The inclusion MS(G1)×MS(G2) 6 MS(G1×G2) is straightforward, because
any minimal non-trivial finite normal subgroup of G1 or of G2 is a minimal non-
trivial finite normal subgroup of G1 ×G2.

To check the reverse inclusion, consider a minimal non-trivial finite normal sub-
group N of G1 × G2, and distinguish two cases. First, if N 6 G1 or N 6 G2,
then N 6 MS(G1) ×MS(G2). Second, if N � G1 and N � G2, then N does not
contain any element of the form (x1, e2) or (e1, x2) with x1 6= e1 and x2 6= e2,
by minimality. If N did contain an element x = (x1, x2) with x1 non central in
G1, then N would contain (y1, e2)−1x−1(y1, e2)x = ([y1, x1], e2) for some y1 ∈ G1
such that [y1, x1] 6= e1, in contradiction with the hypothesis on N ; and simi-
larly for N 3 (x1, x2) with x2 non central in G2; hence r1(N) is central in G1
and r2(N) is central in G2. It follows that N is central in G1 × G2, and that
there exists a prime p such that N is a cyclic group of order p. Hence N is
of the form 〈(x′, x′′)〉G1×G2 with x′ of order p in G1 and x′′ of order p in G2.
In particular, N 6 〈〈x′〉〉G1 × 〈〈x′′〉〉G2 6 MS(G1) × MS(G2). It follows that
MS(G1 ×G2) 6 MS(G2)×MS(G2).

An argument of the same kind shows that (ii) holds.

(iv) Given x ∈W(G1×G2), the normal closure 〈〈x〉〉G1×G2 is finite by definition.
Therefore rj(〈〈x〉〉G1×G2) = 〈〈rj(x)〉〉Gj

is finite, so that rj(x) ∈W(Gj), for j = 1, 2.
This proves that x ∈W(G1)×W(G2), hence W(G1 ×G2) 6W(G1)×W(G2).

Let j ∈ {1, 2} and xj ∈ Gj . The group G3−j commutes with xj , so that
〈〈xj〉〉G1×G2 = 〈〈xj〉〉Gj

. Assume in addition that xj ∈ W(Gj); then by definition
〈〈xj〉〉Gj

is finite, hence 〈〈xj〉〉G1×G2 is finite as well. Therefore xj ∈ W(G1 × G2).
This proves that W(Gj) 6W(G1×G2). Therefore W(G1)×W(G2) 6W(G1×G2),
which ends the proof of (iv).

An argument of the same kind shows that (iii) holds. �
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2.3. A basic property of factor representations.

Lemma 2.6. — Let π be a unitary representation of a group G in a Hilbert space
H and N a normal subgroup of G. Let π1 [respectively π2] be the subrepresentation
of π given by the G-action on the subspace HN of H consisting of the N -invariant
vectors [respectively on its orthogonal complement].

Then π1 and π2 are disjoint.

Proof. — Let ρ1 be a non-zero subrepresentation of π1 and ρ2 a non-zero sub-
representation of π2. On the one hand, the kernel of ρ1 contains N . On the other
hand, if the kernel of ρ2 did contain N , the space of ρ2 would be contained in
HN , hence it would be {0} by the definition of π2. This is preposterous. There-
fore the representations ρ1 and ρ2 have different kernels, and thus they are not
equivalent. �

Two unitary representations π, π′ of a group G are called quasi-equivalent if
no non-zero subrepresentation of π is disjoint from π′, and vice-versa.

Proposition 2.7. — Let π be a factor representation of a group G.
For every non-zero subrepresentation ρ 6 π, we have Ker(ρ) = Ker(π). In

particular, if π′ is any factor representation quasi-equivalent to π, then Ker(π) =
Ker(π′).

Proof. — Set N = Ker(ρ). Denote by Hπ the Hilbert space of π and by Hρ that
of ρ.

Since ρ 6 π, we have Ker(π) 6 N . When N = {e}, there is nothing more to
prove. We assume now that N 6= {e}.

The space Hρ is contained in HNπ ; in particular HNπ 6= {0} since ρ is non-
zero. Since π is a factor representation, HNπ = Hπ by Lemma 2.6. It follows that
N 6 Ker(π), hence that N = Ker(π).

Let π′ be a factor representation of G which is quasi-equivalent to π. By [23,
Theorem 1.7, Page 20], up to equivalence we have π 6 π′ or π′ 6 π. Hence
Ker(π) = Ker(π′) by the assertion that we have already established. �

2.4. On G-faithful representations of subgroups of G. Given a group G and
a normal subgroup N , a unitary character or a unitary representation ρ of N is
called G-faithful if the intersection over all g ∈ G of the kernels Ker(ρg) is trivial,
where ρg(x) = ρ(gxg−1) for all x ∈ N .

The following lemma generalizes [2, Lemma 9]. More precisely, the statement
from loc. cit. assumes that π is irreducible and faithful, whereas we only require
that π is a factor representation and that the restriction π|N is faithful.

Lemma 2.8. — Let G be a countable group, N a normal subgroup of G, and π
a factor representation of G such that the restriction π|N is faithful.

Then N has an irreducible unitary representation ρ which is G-faithful.

Proof. — The proof is a small modification of that in [2, Lemma 9]. We repro-
duce the details since our hypotheses are slightly more general.

We assume that N is non-trivial, since otherwise there is nothing to prove.
Set σ := π|N and let σ =

∫ ⊕
Ω σωdµ(ω) be a direct integral decomposition of σ

into irreducible unitary representations, implemented by an isomorphism Hσ ∼=∫ ⊕
Ω Hωdµ(ω). Denote by {Cj}j∈J the family of G-conjugacy classes contained in
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N distinct from {e}. For each j, let Nj 6 N be the subgroup generated by Cj ;
note that Nj is normal in G. The family {Cj}j∈J is countable and non-empty.
Every non-trivial normal subgroup of G contained in N must contain Nj for some
j ∈ J . Therefore, given ω ∈ Ω, we see that σω is not G-faithful if and only if
Ker

(⊕
g∈G(σω)g

)
contains Nj for some j ∈ J .

Set now Ωj =
{
ω ∈ Ω | Nj 6 Ker

(⊕
g∈G(σω)g

)}
and Ω̃ =

⋃
j∈J Ωj . It follows

that Ω̃ is the subset consisting of these ω ∈ Ω such that σω is not G-faithful. By
[2, Lemma 8], each Ωj is measurable. Since J is countable, Ω̃ is also measurable.

In order to finish the proof, it suffices to show that µ(Ω̃) = 0. Suppose for a
contradiction that µ(Ω̃) > 0. Since J is countable, we have µ(Ω`) > 0 for some
` ∈ J . For each ω ∈ Ω`, we have N` 6 Ker(σω), so that the subspace

∫ ⊕
Ω`
Hω of

Hσ, which is non-zero since µ(Ω`) > 0, consists of N`-invariant vectors. Since N` is
normal in G, the set of N`-invariant vectors is G-invariant, and thus corresponds to
a subrepresentation of π. Since π is a factor representation, we have N` 6 Ker(π)
by Proposition 2.7. Since N` 6 N , this contradicts the hypothesis that π|N is
faithful.

We have just shown that almost all irreducible unitary representations σω of
N occurring in a direct integral decomposition of σ are G-faithful. In particular
there exists ω ∈ Ω such that the irreducible unitary representation ρ := σω is
G-faithful. �

Proof of Proposition 1.14. — Let π be a factor representation of the countable
group G. View π as a faithful representation of the group H := G/Ker(π). By
Lemma 2.8 applied to H and its trivial normal subgroup N = H, the group H has
an irreducible unitary representation ρ which is faithful. We may now view ρ as a
representation of G and the proposition follows. �

Lemma 2.9. — Let G be a countable group, N a normal subgroup of G, and σ
an irreducible unitary representation of N which is G-faithful.

Then G has an irreducible unitary representation π with the following properties:
the restriction π|N is faithful, and every element of Ker(π) is contained in a finite
normal subgroup of G, i.e., Ker(π) is contained in the torsion FC-centre W(G) of
G.

Proof. — Let ρ = IndGN (σ) be the unitary representation of G induced from σ.
Let ρ =

∫ ⊕
Ω ρωdµ(ω) be a direct integral decomposition of ρ into irreducible unitary

representations. Set
Ω̃ = {ω ∈ Ω | ρω|N is not faithful}

and
Ω̂ = {ω ∈ Ω | there exists g ∈ Ker(ρω) such that 〈〈g〉〉G is infinite}.

We claim that µ(Ω̃) = µ(Ω̂) = 0; to show this, we argue as in the proof of [2,
Lemma 10].

To show that µ(Ω̃) = 0, we proceed by contradiction. We assume that there
exists a conjugacy class C` 6= {e} of G contained in N , generating a subgroup
G` of G which is normal and contained in N , and defining a measurable subset
Ω` = {ω ∈ Ω | G` 6 Ker(ρω)}, such that µ(Ω`) > 0. Then, as in ‘Claim 1’ in the
proof of [2, Lemma 10] we show that G` ∩N = {e}, in contradiction with G` 6 N .
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To show that µ(Ω̂) = 0, also by contradiction, we assume this time that there
exists a conjugacy class Cm 6= {e} of G generating an infinite subgroup Gm of
G, and defining a measurable subset Ωm = {ω ∈ Ω | Gm 6 Ker(ρω)}, such that
µ(Ωm) > 0, and we arrive at a contradiction. Indeed, ‘Claim 1’ in the proof already
quoted shows that Gm ∩N = {e}, and ‘Claim 2’ in the same proof shows that Gm
is finite, in contradiction with the hypothesis.

Consequently, the complement of Ω̃ ∪ Ω̂ in Ω has full measure, and thus is non-
empty. For any ω ∈ Ωr(Ω̃∪Ω̂), the representation π := ρω is an irreducible unitary
representation of G that has the required properties. �

A strengthening of Lemma 2.9 will be established in Lemma 2.20 below.

Lemma 2.10. — Let G be a group and N,A, S normal subgroups of G such
that N = A × S. Assume that A is abelian, and that S is the restricted sum of a
collection {Si} of non-abelian simple finite groups. Then:

(i) S has a faithful irreducible unitary representation;
(ii) N has a G-faithful irreducible unitary representation if and only if A has a

G-faithful unitary character.

Proof: see Lemma 13 and its proof in [2]. �

We end this section with some subsidiary facts. Given an abelian group A,
denote by Â the Pontryagin dual of A, namely the space of all unitary characters
A→ T, with the compact open topology. Recall that Â is a compact abelian group.

Lemma 2.11. — Let G be a discrete group, A an abelian normal subgroup of
G, and χ a unitary character of A.

Then χ is G-faithful if and only if the subgroup generated by χG = {χg | g ∈ G}
is dense in Â.

Proof. — This follows from Pontryagin duality. See the proof of the equivalence
between (i) and (ii) of Lemma 14 in in [2]. �

Before the last proposition of this subsection, we recall the natural module struc-
ture on abelian normal subgroups, the definition of cyclic modules, and we state a
lemma which is helpful for translating from the language of abelian groups to that
of modules.

Remark 2.12. — Let G be a group, V an abelian normal subgroup of G, and
Z[G] the group ring of G over the integers. Then V has a canonical structure of
Z[G]-module. Moreover, V is simple as a Z[G]-module if and only if V is minimal
as abelian normal subgroup of G.

Compare with the reminder on simple Fp[G]-modules just before Theorem 1.1.

For a ring R and a module V , the module V is cyclic if there exists v ∈ V
such that V = Rv. This terminology is used below for R the group ring Z[G] and
V an abelian normal subgroup of G, and for R the group algebra Fp[G] and V a
p-elementary abelian normal subgroup of G for some prime p.

The proof of the next lemma is straightforward, and left to the reader.

Lemma 2.13. — Let G be a group and V an abelian normal subgroup of G.
Then V is generated as a group by one G-conjugacy class if and only if V as a

Z[G]-module is cyclic.



46 P.-E. Caprace & P. de la Harpe

Suppose moreover that V is an elementary abelian p-group. Then V is generated
as a group by one G-conjugacy class if and only if V as an Fp[G]-module is cyclic.

The following classical result will be frequently used in the sequel, without further
notice. For a proof, see [5, § 3, no. 3].

Proposition 2.14. — Let R be a ring and U a R-module. The following
conditions are equivalent:

(i) U is generated by simple submodules.
(ii) U is a direct sum of a family of simple submodules.
(iii) Every submodule of U is a direct summand.

If U satisfies these conditions, then
(a) every submodule of U satisfies Conditions (i) to (iii),
(b) every quotient module of U satisfies Conditions (i) to (iii).

A module U satisfying Conditions (i) to (iii) is called semi-simple.

Proposition 2.15 will be needed in Section 4.

Proposition 2.15. — Let G be a group, A a finite normal subgroup of G
contained in MA(G), and p a prime.

The following properties are equivalent:
(i) The group A has a G-faithful unitary character.
(ii) The group A is generated by a single conjugacy class.
(iii) The Z[G]-module A is cyclic.

Suppose moreover that A is an elementary abelian p-group. Then Properties (i) to
(iii) are equivalent to:

(iv) The Fp[G]-module A is cyclic.

Proof. — For the equivalence of (i) and (ii), we follow the arguments of the
proof of Lemma 14 in [2] (whose formal statement is however insufficient for our
purposes).

By (2) in Proposition 2.1, A is a finite abelian group and is therefore a direct sum
A =

⊕
p∈P Ap, where P is the set of primes p for which A has elements of order p,

and where Ap is the p-Sylow subgroup of A. Moreover Ap is an elementary abelian
p-group for each p ∈ P , by (1) of the same proposition. Notice that Ap is semi-
simple by Proposition 2.14, since A is contained in MA(G). (For comparison with
[2, Lemma 14], note that it follows from Proposition 2.14 applied to each Ap that
there exists a finite set {Ai}i∈E of abelian mini-feet in G such that A =

⊕
i∈I Ai;

each Ai is isomorphic to (Fp)n for some prime p and some n > 1.) Observe that
the Pontryagin dual of A =

⊕
p∈P Ap is canonically isomorphic to

⊕
p∈P Âp.

We know by Lemma 2.11 that A has a G-faithful unitary character if and only
if Â is generated by one G-orbit. By the Chinese Remainder Theorem, the group
Â =

⊕
p∈P Âp is generated by a single G-orbit if and only each of its p-Sylow

subgroups Âp is generated by a single G-orbit (this can alternatively be deduced
from Lemma 2.13 together with Lemma 3.8 below). Using Lemma 2.11 again, we
deduce that A has a G-faithful unitary character if and only if Ap has a G-faithful
character for each p ∈ P .
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Consequently, it suffices to prove the equivalence of (i) and (ii) when A = Ap for
one prime p. By Lemma 2.13, the group Ap is generated by a single conjugacy class
if and only if Ap is cyclic as an Fp[G]-module. Under the natural identification of
Âp with the dual A∗p := HomFp(Ap,Fp), the G-action on Âp corresponds to the
dual (or contragredient) action of G on A∗p. Thus we may identify Âp with A∗p as
Fp[G]-modules. A finite semi-simple Fp[G]-module is cyclic if and only if its dual
is cyclic (see Lemma 3.2 in [34]). Since the dual A∗p is canonically isomorphic to
the Pontryagin dual Âp, and since Ap is semi-simple, we deduce from Lemma 2.11
that Ap is generated by a single conjugacy class if and only if Ap has a G-faithful
unitary character.

The equivalence of (ii) and (iii) holds by Lemma 2.13.

In the particular case of A an elementary abelian p-group, similarly, the equiva-
lence of (ii) and (iv) holds by Lemma 2.13. �

2.5. Irreducible representations whose kernel is contained in Fsol(G). The
goal of this subsection is to establish the following result of independent interest.

Proposition 2.16. — Any countable group G admits an irreducible unitary
representation π such that, for every element g ∈ Ker(π), the normal closure 〈〈g〉〉G
is a soluble finite subgroup of G.

In other words, G has an irreducible unitary representation whose kernel is con-
tained in the characteristic subgroup Fsol(G).

We need the following.

Lemma 2.17. — Let G be a countable group and K a normal subgroup of G
contained in the torsion FC-centre W(G).

If G/K is irreducibly faithful, then G/(K ∩ Fsol(G)) is also irreducibly faithful.

Proof. — Set S = Fsol(G). In order to show that G/(K ∩ S) is irreducibly
faithful, it suffices by Theorem 2.2 to consider an arbitrary finite normal subgroup
A of G/(K ∩ S) contained in MA

(
G/(K ∩ S)

)
and to show that A is generated by

a single conjugacy class.
Let r1 : G� G/(K∩S) and r2 : G/(K∩S)� G/K be the canonical projections.

We claim that the restriction r2|A is injective. Indeed, let x ∈ G be such that
r1(x) ∈ Ker(r2|A) = A ∩Ker(r2); note that r1(x) ∈ A and x ∈ K. We have

〈〈r1(x)〉〉G/(K∩S) ∼= 〈〈x〉〉G/
(
〈〈x〉〉G ∩ (K ∩ S)

)
= 〈〈x〉〉G/

(
〈〈x〉〉G ∩ S

)
.

SinceK 6W(G) by hypothesis, the normal closure 〈〈x〉〉G is finite. By the definition
of S, every finite normal subgroup of G contained in S is soluble; hence 〈〈x〉〉G ∩ S
is soluble. Moreover 〈〈r1(x)〉〉G/K∩S is abelian because r1(x) ∈ A and A is abelian
normal in G/(K ∩ S). It follows that 〈〈x〉〉G is soluble-by-abelian, hence soluble.
We infer that x ∈ S. Therefore r1(x) = e, which proves the claim.

Since G/(K ∩ S) is a quotient of G, we may view A as a Z[G]-module, and we
must show that this module is cyclic (see Proposition 2.15). The claim implies that
r2 induces an isomorphism of Z[G]-modules A → r2(A). Since G/K is irreducibly
faithful by hypothesis, and since r2(A) 6 MA(G/K) by Proposition 2.1(7), we
deduce from Theorem 2.2 that r2(A) is generated by a single conjugacy class in
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G/K. Thus r2(A) is a cyclic Z[G]-module by Proposition 2.15, from which it
finally follows that A is a cyclic Z[G]-module, as required. �

Proof of Proposition 2.16. — The group G has an irreducible unitary represen-
tation whose kernel K is contained in W(G), by Lemma 2.9 applied with N = {e}.
By Lemma 2.17, it follows that G also has an irreducible unitary representation
whose kernel is contained in Fsol(G). �

Remark 2.18. — For a finite group G, Proposition 2.16 implies that G has an
irreducible representation with soluble kernel. This falls quite short of a theorem
due to Broline and Garrison [20, Corollary 12.20] which establishes that G has an
irreducible representation with nilpotent kernel. More precisely:

Let G be a finite group and let π be an irreducible representation of G over C
satisfying either of the following conditions: (i) the degree of π is maximal among
the degrees of all irreducible representations of G, (ii) the kernel of π is minimal
among the kernels of all irreducible representations of G. Then the kernel of π is
nilpotent.

There are groups without any irreducible representation having abelian kernel.
This is well-known to experts, and we are convinced that examples exist in the
literature, but we have not been able to find a precise reference; one specific example
can be found in Appendix A.

Remark 2.19. — Let G be a countable group.
(1) It follows from Proposition 2.16 that the complement GrFsol(G) of Fsol(G)

in a countable group G is irreducibly faithful. (A refinement of that state-
ment will be established in Proposition 4.2.)

(2) However, the quotient G/Fsol(G) need not have a faithful irreducible uni-
tary representation.

Indeed, let H be a countable group such that H/Fsol(H) ∼= C3 is cyclic
of order 3; see Example 2.4(7). Set G = H × H. By Proposition 2.5, we
have

G/Fsol(G) ∼= (H ×H)/(Fsol(H)× Fsol(H)) ∼= C3 × C3,

so that G/Fsol(G) does not have any faithful irreducible unitary represen-
tation.

(3) In [2, Corollary 3], it is noted that each of the following conditions on G is
sufficient to imply that G has a faithful irreducible unitary representation:
(i) G is torsion-free,
(ii) all conjugacy classes in G distinct from {e} are infinite.
Proposition 2.16 shows that the following condition, weaker than both (i)
and (ii), is also sufficient:
(iii) Fsol(G) = {e}.
Here are two families of groups for which (iii) holds, but neither (i) nor (ii)
does.
(a) Any restricted sum H of finite non-abelian simple groups. More gen-

erally, any direct product G × H of an irreducibly faithful group G
with a restricted sum H of finite non-abelian simple groups.

(b) Let G be one of the groups defined by B.H. Neumann in 1937 to
show that there are uncountably many pairwise non-isomorphic groups
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which are finitely generated and not finitely presented; see [24], as well
as [17, Section III.B and in particular no 35]. Recall that, in G, the
FC-centre is a restricted sum N :=

∏′
nHn, where each Hn is a finite

simple alternating group, and |H1| < · · · < |Hn| < |Hn+1| < . . . ,
and the quotient G/N is the permutation group of Z generated by
translations and even finitely supported permutations. Observe that
G is neither torsion-free, nor with all conjugacy classes other than {e}
infinite. The subgroup Fsol(G) is trivial, and therefore G has a faithful
irreducible unitary representation.

We finish by recording the following strengthening of Lemma 2.9, which will be
needed in Section 4.

Lemma 2.20. — Let G be a countable group, N a normal subgroup of G, and
σ an irreducible unitary representation of N which is G-faithful.

Then G has an irreducible unitary representation π such that Ker(π)∩N = {e}
and Ker(π) 6 Fsol(G).

Proof. — Let K be the kernel of the irreducible unitary representation of G
afforded by applying Lemma 2.9 to σ. Thus K ∩ N = {e} and K 6 W(G). The
desired conclusion now follows from Lemma 2.17. �

2.6. On abelian groups. We recall here some standard definitions and results
concerning an abelian group G, before giving a proof of Proposition 1.12. In the
rest of this subsection, the abelian group G is written additively.

A subset L of G is independent if 0 /∈ L and if, for any finite subset {g1, . . . , gk}
of L and any integers n1, . . . , nk ∈ Z, such that n1g1 + · · · + nkgk = 0, we have
n1g1 = · · · = nkgk = 0; equivalently if the subgroup of G generated by L is the
direct sum over g ∈ L of the cyclic groups 〈g〉. The torsion-free rank r0(G)
of G is the cardinality of an independent subset L of G which contains elements
of infinite order only and which is maximal with respect to this property (this
cardinality is independent of the choice of L). For a prime p, the p-rank of G
is the cardinality of an independent subset L of G which contains elements whose
orders are powers of p only and which is maximal with respect to this property (this
cardinality is independent of the choice of L). For example, if G is a subgroup of Q,
then r0(G) 6 1 and rp(G) = 0 for all p. For a prime p and the quasi-cyclic group
Z(p∞) := Z[1/p]/Z, we have r0(Z(p∞)) = 0, rp(Z(p∞)) = 1, and r`(Z(p∞)) = 0
for a prime ` 6= p. For the group T, we have r0(T) = c (the cardinality of the
continuum) and rp(T ) = 1 for every prime p.

An abelian group E is divisible if, for every g ∈ E and every positive integer
n, there exists h ∈ E such that g = nh. For example, Q and T are divisible, and
Z is not. It is a fact that any abelian group G can be embedded as a subgroup of
a divisible group E, minimal in the sense that no proper divisible subgroup of E
contains G; moreover two such E are isomorphic over G. Such a group E, with its
subgroup G, is called a divisible hull of G [12, Section 24].

Any divisible group E is isomorphic to a direct sum

(∗) E ∼=
( ⊕
r0(E)

Q
)
⊕
(⊕

p

( ⊕
rp(E)

Z(p∞)
))
.
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In particular, we have

(∗∗) T ∼=
(⊕

c

Q
)
⊕
(⊕

p

Z(p∞)
)
.

See [12, Theorem 23.1]. A divisible group (for example T) has a subgroup isomor-
phic to some abelian group G if and only if it has a subgroup isomorphic to the
divisible hull E of G; furthermore, we have
(∗ ∗ ∗) r0(E) = r0(G) and rp(E) = rp(G) for all primes p;
see [12, Section 24].

Proof of Proposition 1.12. — It follows from (**) and (***) that G satisfies
Condition (i) if and only if r0(G) 6 c and rp(G) 6 1 for all primes p, that is if and
only if G satisfies Condition (ii) �

3. Cyclic semi-simple Fp[G]-modules

Let R be a ring. The following lemma is the module version of a result often
stated for groups and known as Goursat’s Lemma. The module version appears,
for example, in [22, Page 171]. More on this lemma can be consulted in [1].

Lemma 3.1. — Let A = A0 ⊕ A1 be the direct sum of two R-modules. For
i = 0, 1, let ri : A � Ai be the canonical projection. Let M 6 A be a submodule
such that ri(M) = Ai for i = 0, 1. Set Mi = M ∩Ai.

Then the R-modules A0/M0 and A1/M1 are isomorphic, and the canonical image
of M in A0/M0 ⊕ A1/M1 is the graph of an isomorphism of R-modules A0/M0 →
A1/M1.

Let now p be a prime and G a group. The main goal of this section is to
characterize when a finite semi-simple Fp[G]-module is cyclic. This will be achieved
in Proposition 3.9 below, after some preparatory steps. Proposition 3.9 is well-
known to experts: see Lemma 3.1 in [34]. It can be seen as a version over Fp
of a result for cyclic unitary representations of compact groups which appears in
Greenleaf and Moskowitz [16, Proposition 1.8].

Along the way, we count the number of simple Fp[G]-submodules of a direct
sum V0⊕· · ·⊕V` of mutually isomorphic simple Fp[G]-modules (Lemma 3.5). This
count is an important ingredient for the proof of the last inequality of Theorem 1.1.

Lemma 3.2. — Let W be a finite simple Fp[G]-module. Let k = LFp[G](W ) be
its centralizer, which is a finite field extension of Fp. Let V0, V1 be two copies of
W .

Every simple Fp[G]-submodule M of V0 ⊕ V1 such that M ∩ V0 = {0} is of the
form

M = {(λx, x) | x ∈ V1}
for some λ ∈ k.

Proof. — This is a straightforward consequence of Lemma 3.1. �

The following extension to a direct sum of `+ 1 components will be useful.

Lemma 3.3. — Let W be a finite simple Fp[G]-module. Let k = LFp[G](W ).
Let ` > 0; for each i = 0, . . . , `, let Vi be a copy of W . Set U = V0 ⊕ V1 ⊕ · · · ⊕ V`.



GROUPS WITH IRREDUCIBLY UNFAITHFUL SUBSETS 51

Every maximal Fp[G]-submodule M � U such that M ∩ V0 = {0} is of the form

M =
{(∑̀

i=1
λixi, x1, x2, . . . , x`

) ∣∣∣ (x1, . . . , x`) ∈ V1 ⊕ · · · ⊕ V`
}

for some (λ1, . . . , λ`) ∈ k`.
Proof. — Let r : U � V1 ⊕ · · · ⊕ V` be the canonical projection. Let M � U be

a maximal Fp[G]-submodule such that M ∩ V0 = {0}. Then the restriction r|M is
injective. SinceM is maximal, we have U = V0⊕M , so that r|M : M → V1⊕· · ·⊕V`
is an isomorphism of Fp[G]-modules.

Given i ∈ {1, . . . , `}, let Mi = (r|M )−1(Vi). Then Mi is isomorphic to Vi, hence
it is a simple Fp[G]-submodule ofM contained in V0⊕Vi. MoreoverMi∩V0 = {0}.
By Lemma 3.2, there exists λi ∈ k such that Mi

∼= {(λixi, xi) | xi ∈ Vi} 6 V0 ⊕ Vi.
Since r|M : M → V1 ⊕ · · · ⊕ V` is an isomorphism, we deduce that

M = M1 ⊕ · · · ⊕M`

=
{(∑̀

i=1
λixi, x1, x2, . . . , x`

) ∣∣∣ (x1, . . . , x`) ∈ V1 ⊕ · · · ⊕ V`
}

as required. �

We can now characterize when a direct sum of copies of a given simple Fp[G]-
module is cyclic.

Lemma 3.4. — Retain the notation of Lemma 3.3.
The Fp[G]-module U is cyclic if and only if ` < dimk(W ).
Proof. — Assume first that ` > dimk(W ). Let (v0, . . . , v`) ∈ U . Since Vi =

W for all i, we may view vi as an element of W . Then, upon reordering the
summands V0, . . . , V`, we may assume that there exists (λ1, . . . , λ`) ∈ k` such that
v0 =

∑`
i=1 λivi. It follows that (v0, . . . , v`) belongs to{(∑̀

i=1
λixi, x1, x2, . . . , x`

) ∣∣∣ (x1, . . . , x`) ∈ V1 ⊕ · · · ⊕ V`
}
,

which is a proper Fp[G]-submodule of U . Hence U is not cyclic. (In a con-
text of characteristic zero, an argument of this kind is used for the proof of [10,
Lemma 15.5.3].)

In order to prove the converse, we proceed by induction on `. In case ` = 0, we
have 0 = ` < dimk(W ) and U = V0 = W is simple, hence cyclic.

We now assume that 0 < ` < dimk(W ). The induction hypothesis ensures that
the Fp[G]-module V1 ⊕ · · · ⊕ V` is cyclic. Let (v1, . . . , v`) be a generator. Viewing
all vi as elements of W , the hypothesis that ` < dimk(W ) ensures the existence
of an element v0 ∈ W which does not belong to the k-subspace of W spanned by
{v1, . . . , v`}. Let M be the Fp[G]-submodule of U spanned by (v0, v1, . . . , v`). Let
r : U � V1 ⊕ · · · ⊕ V` denote the canonical projection. The image r(M) coincides
with the Fp[G]-submodule generated by (v1, . . . , v`), i.e., with V1 ⊕ · · · ⊕ V`. If one
hadM ∩V0 = {0}, thenM would be a maximal proper Fp[G]-submodule of U , and
Lemma 3.3 would then ensures that v0 is a k-linear combination of {v1, . . . , v`}, a
contradiction. Hence M ∩ V0 6= {0}. Since V0 is simple, M contains V0, so that
U = M ; this shows that U is indeed cyclic. �
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The following basic counting lemma will also be useful.
Lemma 3.5. — Retain the notation of Lemma 3.3. Moreover, set q = |k|.
The number of simple Fp[G]-submodules of U is

q` + q`−1 + · · ·+ q + 1 = q`+1 − 1
q − 1 .

Proof. — We proceed by induction on `. In case ` = 0, the Fp[G]-module U = V0
is simple, so the result is clear. Assume now that ` > 1. Consider

the collection S of all simple Fp[G]-submodules of U ,
the complement S0 of V0 in S, i.e., S0 = {S ∈ S | S ∩ V0 = {0}},
and the collection S ′ of all simple Fp[G]-submodules of V1 ⊕ · · · ⊕ V`.

Denote by r the canonical projection U � V1 ⊕ · · · ⊕ V`. Each S ∈ S0 determines
its image S′ = r(S) ∈ S ′, which can be viewed as a submodule of U contained
in V1 ⊕ · · · ⊕ V`, and there exists by Lemma 3.1 an element λ ∈ k such that
S = {(λx, x) | x ∈ S′} 6 V0 ⊕ S′. Conversely, S′ ∈ S ′ and λ ∈ k determine S.
This shows that |S| = |S0|+ 1 = q|S ′|+ 1. Since |S ′| = q`−1 + · · ·+ q + 1 by the
induction hypothesis, this ends the proof. �

Lemma 3.6. — Retain the notation of Lemma 3.3. Moreover, set q = |k|,
denote by m the dimension of W over k, and assume that ` > m. Let Z be a set
of simple Fp[G]-submodules of U of cardinality |Z| < qm + · · ·+ q + 1.

There is an Fp[G]-submodule B 6 U with B ∩ Z = {0} for all Z ∈ Z, and such
that U/B is cyclic.

Proof. — Let B be the collection of all Fp[G]-submodules B of U such that
B ∩ Z = {0} for all Z ∈ Z. Let also B ∈ B be an element which is maximal for
the inclusion relation. Note that the Fp[G]-module U/B is semi-simple. If U/B
were not cyclic, then U/B would be isomorphic to a direct sum of at least m + 1
copies of W by Lemma 3.4. Therefore U/B would contain at least qm + · · ·+ q+ 1
simple Fp[G]-submodules by Lemma 3.5. In particular U/B would contain at least
one simple Fp[G]-submodule C which is different from the canonical image of Z in
U/B for all Z ∈ Z. Denoting by B′ the preimage of C in U , we obtain B � B′ and
B′ ∈ B. This contradicts the maximality of B. Hence U/B is cyclic. �

Given an additive group V and a subset F ⊆ V , we set
F − F = {c ∈ V | c = a− b for some a, b ∈ F}.

The following result will be needed in Section 5.
Lemma 3.7. — Retain the notation from Lemma 3.5.
If ` > 1, there is a subset F ⊆ U of size q` + q`−1 + · · ·+ q + 1 such that F − F

contains a non-zero element of each of the simple Fp[G]-submodules of U .
Proof. — For each subset I ⊆ {0, 1, . . . , `}, we view the direct sum

⊕
i∈I Vi as a

submodule of U .
Let S be the collection of all simple submodules of U and S ′ be the subcollection

consisting of those S ∈ S which are contained in V0 ⊕ V1. By Lemma 3.5, we have
|S| = q` + q`−1 + · · ·+ q + 1 and |S ′| = q + 1.

By definition, each element of S is a simple module, so that any two distinct
elements of S have intersection {0}. Choosing a non-zero element in each member
of S r S ′, we obtain a set E of size q` + q`−1 + · · ·+ q2.
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Choose now a non-zero x ∈ V1, and set E′ = {(λx, x) | λ ∈ k} ⊆ V0 ⊕ V1. Thus
|E′| = |k| = q. By Lemma 3.2, the set E′ contains a non-zero element in each
member of S ′ r {V0}.

Finally, we set F = E ∪ E′ ∪ {0}. Observe that |F | = q` + q`−1 + · · · + q + 1.
Moreover, we have E ∪ E′ ⊂ F r {0} ⊂ F − F , so that F − F contains a non-zero
element of each member of S r {V0}. Since

V0 3 (x, 0) = (x, x)− (0, x) ∈ E′ − E′ ⊂ F − F,
we see that F − F also contains a non-zero element of V0. Thus the set F has the
required properties. �

Given a semi-simple R-module U and a simple R-module W , the submodule of
U generated by all simple submodules isomorphic to W is called the isotypical
component of type W of U . Every semi-simple R-module is the direct sum of
its isotypical components [5, § 3, Proposition 9].

Lemma 3.8. — Let R be a ring and U = M1 ⊕ · · · ⊕M` be a finite direct sum
of semi-simple R-modules. Assume that for all i 6= j, the modules Mi and Mj are
disjoint, i.e., they do not contain any non-zero isomorphic summands. Then U is
cyclic if and only if Mi is cyclic for all i = 1, . . . , `.

In particular, a semi-simple R-module with finitely many isotypical components
is cyclic if and only if each of its isotypical components is cyclic.

Proof. — The ‘only if’ part is clear since any quotient of a cyclic module is cyclic.
Assume that Mi is cyclic for all i ∈ {1, . . . , `} and let vi ∈ Mi be a generator.

We claim that v = (v1, . . . , v`) is a generator of U . We prove this by induction
on `. The base case ` = 1 is trivial. Assume now that ` > 2 and let M be the
submodule generated by v. The induction hypothesis ensures that the canonical
projection of M to A0 =

⊕`−1
i=1 Mi is surjective. Clearly, the projection of M to

A1 = M` is surjective. Since A0 and A1 are disjoint, it follows from Lemma 3.1
that M = A0 ⊕A1 = U . �

Proposition 3.9. — Let U be a finite semi-simple Fp[G]-module. The follow-
ing properties are equivalent:

(i) U is not cyclic.
(ii) There exist a finite simple Fp[G]-module W of dimension m > 1 over

k = LFp[G](W ), and a submodule V 6 U isomorphic to a direct sum
of m+ 1 copies of W .

Proof. — Assume that Property (ii) holds. In view of Lemma 3.4, the module
V afforded by (ii) is not cyclic. Since V is a direct summand of U , and therefore
isomorphic to a quotient of U , it follows that U is not cyclic.

Assume conversely that U is not cyclic. Then U has a non-cyclic isotypical
component by Lemma 3.8, and it follows from Lemma 3.4 that Condition (ii) holds.

�

4. On the structure of minimal unfaithful subsets

The goal of this section is to prove Theorem 1.1. In fact, we shall establish a finer
statement that describes precisely the structure of the normal closure of an irre-
ducibly unfaithful subset of size n in a countable group with Property P(n− 1), see
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Theorem 4.5 below. We shall however start with the proof of the easier implication
in Theorem 1.1.

4.1. Proof of (2) ⇒ (1) in Theorem 1.1.

Lemma 4.1. — Let G be a countable group. Suppose that there exist a prime
p, a finite normal subgroup V of G which is an elementary abelian p-group, and a
finite simple Fp[G]-module W , with centralizer field k = LFp[G](W ) and dimension
m = dimk(W ), such that V is isomorphic as Fp[G]-module to a direct sum of m+1
copies of W . Set q = |k|. Then:

(i) For every irreducible unitary representation π of G, the kernel Ker(π) con-
tains at least one of the qm + · · ·+ q + 1 simple submodules of V .

(ii) A subset F ⊂ V is irreducibly faithful in G if and only if F ∩K ⊂ {e} for
some simple Fp[G]-submodule K of V .

(iii) There is a subset F ⊂ V of size qm + · · · + q + 1 which is not irreducibly
faithful.

Proof. — (i) Since V is not cyclic as an Fp[G]-module by Lemma 3.4, it follows
that V has no G-faithful character by Proposition 2.15. In view of Lemma 2.8,
for every irreducible unitary representation π of G, the restriction π|V cannot be
faithful. In particular Ker(π) contains at least one of the simple Fp[G]-submodules
of V .

(ii) Let F be a subset of V . If F contains a non-trivial element in each of
the simple Fp[G]-submodules of V , it follows from (i) that F is not irreducibly
faithful in G. Conversely, if there is a simple Fp[G]-submodule K in V such that
F ∩ K ⊂ {e}, then every non-trivial element of F has a non-trivial image in the
quotient V/K. Since V/K is a cyclic Fp[G]-module by Lemma 3.4, it follows from
Proposition 2.15 and Lemma 2.9 thatG/K has an irreducible unitary representation
whose restriction to V/K is faithful. Therefore F is irreducibly faithful in G.

(iii) By Lemma 3.5, the number of simple submodules in V equals qm+· · ·+q+1.
Thus V contains a subset of size qm+· · ·+q+1 which is not irreducibly faithful. �

Proof of (2) ⇒ (1) in Theorem 1.1. — If G satisfies (2) in Theorem 1.1, then
G contains a set F ⊆ V of size qm + · · · + q + 1 which is not irreducibly faithful
by Lemma 4.1, so that G does not have Property P(qm + · · · + q + 1). Since
n > qm + · · ·+ q + 1, the group G does not have Property P(n). �

4.2. Minimal unfaithful subsets are contained in Fsol(G). The following re-
sult shows that, in a countable group G, the irreducible faithfulness of a subset F
can be checked on the intersection of F with Fsol(G).

Proposition 4.2. — Let G be a countable group and F a subset of G. If
F ∩ Fsol(G) is finite and irreducibly faithful, then F is irreducibly faithful.

In particular, a finite subset F ⊆ G is irreducibly faithful if and only if the
intersection F ∩ Fsol(G) is irreducibly faithful.

Note : We know already the particular case of this proposition for F disjoint
from Fsol(G), for example for F = Gr Fsol(G), see Remark 2.19(1).

Proof. — Set S = Fsol(G). Let F ⊆ G be such that F∩S is finite and irreducibly
faithful. We aim at proving that F is irreducibly faithful. To this end, we partition
F into three subsets, F = FS t FH t F∞, where:
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FS = {x ∈ F | 〈〈x〉〉G is finite soluble} = F ∩ S,
FH = {x ∈ F | 〈〈x〉〉G is finite non-soluble} = (F ∩W(G))r S,
F∞ = {x ∈ F | 〈〈x〉〉G is infinite} = F r (FS t FH).

By hypothesis, there exists an irreducible unitary representation ρ of G such
that ρ(x) 6= id for all x ∈ FS r {e}. Since FS is finite by hypothesis, the normal
subgroup A = 〈〈FS〉〉G is finite soluble (Lemma 2.3). Let K = A ∩Ker(ρ), which is
a finite soluble normal subgroup of G, and let r : G� Q = G/K be the canonical
projection. Note that r(x) 6= e for all x ∈ FS r {e}.

Since A is soluble, its image ρ(A) is soluble as well. Therefore the socle Soc(ρ(A))
is abelian. Since ρ(G) is irreducibly faithful, the socle Soc(ρ(A)) has a ρ(G)-faithful
irreducible unitary character by Lemma 2.8.

The homomorphism ρ induces an isomorphism ρA : A/K
∼=−→ ρ(A), and sim-

ilarly r induces an isomorphism rA : A/K
∼=−→ r(A). Moreover, the action by

conjugation of G on A induces G-actions on ρ(A) and r(A), and the isomorphism
rAρ

−1
A : ρ(A)

∼=−→ r(A) is G-equivariant. Hence the group N = Soc(r(A)), which is
normal in Q, is abelian and has a Q-faithful unitary character, say σ.

We now invoke Lemma 2.20, which affords an irreducible unitary representation
π of Q whose restriction to N is faithful, and such that Ker(π) is contained in
Fsol(Q).

The composite map π′ = π ◦ r is an irreducible unitary representation of G.
We claim that π′(x) 6= id for all x ∈

(
FSr{e}

)
. We know that the representation

π|N is faithful. Since N = Soc(r(A)), it follows that π|r(A) is also faithful. As noted
above, for every x ∈ FSr{e}, we have r(x) 6= e, and therefore π′(x) = π(r(x)) 6= id.

We next claim that π′(x) 6= id for all x ∈ FH . Indeed, for x ∈ FH , we have
x 6= e and 〈〈x〉〉G 66 S, since 〈〈x〉〉G is not soluble. But K ∩ 〈〈x〉〉G is finite soluble,
because K is so. Therefore 〈〈r(x)〉〉Q = r(〈〈x〉〉G) ∼= 〈〈x〉〉G/(K∩〈〈x〉〉G) is not soluble,
hence r(x) /∈ Fsol(Q). Since the kernel of π is contained in Fsol(Q), this shows that
r(x) /∈ Ker(π), and therefore that x /∈ Ker(π′), as claimed.

Given x ∈ F∞, the normal closure 〈〈x〉〉G is infinite. Since K is finite, it follows
that 〈〈r(x)〉〉Q is infinite as well. In particular r(x) is not contained in the kernel
of π, which is contained in Fsol(Q) 6 W(Q). Hence π′(x) 6= 1. This proves that
π′(x) 6= 1 for all x ∈ F r {e}.

Thus F is irreducibly faithful, as required. �

Corollary 4.3. — Let G be a countable group and F ⊆ G be a finite subset
which is irreducibly unfaithful.

If every proper subset of F is irreducibly faithful, then F is contained in Fsol(G).

Proof. — Let F be a finite subset of G of which every proper subset is irreducibly
faithful. If F was not contained in Fsol(G), then F would be irreducibly faithful
by Proposition 4.2. Therefore F ⊆ Fsol(G). �

4.3. Unfaithful subsets of size n in countable groups with P(n− 1).

Lemma 4.4. — Let n be a positive integer and G a countable group. Let F ⊂ G
be an irreducibly unfaithful subset of size n such that:

(a) every proper subset of F is irreducibly faithful;
(b) every element of F is contained in an abelian mini-foot of G.
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Let U = 〈〈F 〉〉G the normal subgroup of G generated by F .
Then there exist a prime p, and a simple Fp[G]-module W , such that the

following assertions hold, where k denotes the centralizer field LFp[G](W ), and
m = dimk(W ), and q = |k| :

(i) U is a finite elementary abelian p-group, contained in the abelian mini-socle
MA(G);

(ii) U is isomorphic as an Fp[G]-module to the direct sum of a number `+ 1 of
copies of W , and ` > m;

(iii) qm + qm−1 + · · ·+ q + 1 6 n.

Proof. — The hypothesis (a) on F implies that F does not contain the neutral
element e, since otherwise F would be irreducibly faithful.

By Proposition 2.1, the normal subgroup U is abelian and finite. The conjugation
action of G on U allows us to view U as a Z[G]-module. Since U is generated by
mini-feet ofG, it follows from Proposition 2.14 that U is a semi-simple Z[G]-module.
Let Y denote the set of isomorphism classes of simple Z[G]-submodules of U . For
each Y ∈ Y, let UY be the submodule of U generated by the simple submodules
isomorphic to Y ; note that UY is a finite abelian normal subgroup of U . We have
the isotypical direct sum decomposition U =

⊕
Y ∈Y UY .

For x ∈ F , the normal closure 〈〈x〉〉G 6 U is an abelian mini-foot of G by
hypothesis, hence a simple Z[G]-module. Thus it is isomorphic to some Y ∈ Y and
〈〈x〉〉G 6 UY . Setting FY = F ∩ UY for all Y ∈ Y, we obtain a partition of F as
F =

⊔
Y ∈Y FY .

We claim that Y contains a single element. Indeed, assume this is not the case.
For each Y ∈ Y, the subset FY is strictly contained in F , hence is irreducibly faithful
by the hypotheses made on F . Let πY be an irreducible unitary representation of
G witnessing the faithfulness of FY , and set KY = UY ∩ Ker(πY ). Thus every
element of FY has a non-trivial image in UY /KY . Moreover, we may view πY as an
irreducible unitary representation of G/KY whose restriction to UY /KY is faithful.
By Lemma 2.8, UY /KY has a G/KY -faithful unitary character. Therefore it is a
cyclic Fp[G/KY ]-module by Proposition 2.15, where p is the exponent of Y . In
particular it is a cyclic Z[G]-module

Let now K =
〈⋃

Y ∈Y KY

〉
. Thus K is a normal subgroup of G, and we have a

natural direct sum decomposition K ∼=
⊕

Y ∈Y KY (see Lemma 2.3). In particular
K ∩ UY = KY for all Y ∈ Y. Moreover, we have K ∩ F = ∅, since otherwise
K ∩FY would be non-empty for some Y ∈ Y, which would imply that KY contains
an element of FY . This contradicts the definition of KY . Therefore, every element
of F has a non-trivial image in G/K.

We may view the quotient U/K as a Z[G]-module. It is semi-simple by Propo-
sition 2.14, as a quotient module of U . Moreover, the direct sum decomposition
U/K ∼=

⊕
Y ∈Y UY /KY is the isotypical decomposition of U/K. We have seen

above that the isotypical component UY /KY of U/K is a cyclic Z[G]-module for
each Y ∈ Y. It follows from Lemma 3.8 that U/K is cyclic. By Proposition 2.15,
this means that U/K has a G/K-faithful unitary character. By Lemma 2.9, G/K
has an irreducible unitary representation π whose restriction to U/K is faithful.
Since every element of F has a non-trivial image in G/K, precomposing π with
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the projection G � G/K yields an irreducible unitary representation of G map-
ping every element of F to a non-trivial operator. Thus F is irreducibly faithful, a
contradiction. This proves the claim.

We denote the single element of Y byW . From now on, denote by p the exponent
of W . Since the Z[G]-module W is simple, p is a prime. Thus W is a simple Fp[G]-
module, and U = UW is isomorphic to a direct sum of `+ 1 copies of W for some
integer ` > 0. Since F is not irreducibly faithful, it follows that the restriction to
U of every irreducible unitary representation of G cannot be faithful. Therefore U
has no G-faithful character by Lemma 2.9. Hence U is not a cyclic Fp[G]-module
by Proposition 2.15. In view of Proposition 3.9, this implies that ` > m, where m
is the dimension of W over k = LFp[G](W ). This proves (i) and (ii).

It remains to prove that n = |F | > qm+· · ·+q+1. Recall from the hypothesis that
〈〈x〉〉G is a simple Fp[G]-submodule of U for all x ∈ F . Assume for a contradiction
that n < qm + · · · + q + 1. Then, by Lemma 3.6, there is an Fp[G]-submodule
B 6 U with B ∩ 〈〈x〉〉G = {e} for all x ∈ F , such that U/B is cyclic. It then
follows from Lemma 2.9 and Proposition 2.15 that G/B has an irreducible unitary
representation whose restriction to U/B is faithful. Viewing that representation as
a representation of G, we obtain a contradiction with the fact that F is irreducibly
unfaithful. This proves (iii). �

In the introduction, Property P(n) was defined for all n > 1. For the sake
of uniformity in the forthcoming arguments, we extend the definition to the case
n = 0. Thus every group has Property P(0), tautologically. The main result of this
section is the following.

Theorem 4.5. — Let n be a positive integer and G a countable group with
Property P(n − 1). Let F ⊂ G be an irreducibly unfaithful subset of size n, and
U = 〈〈F 〉〉G the normal subgroup of G generated by F .

Then there exist a prime p and a finite simple Fp[G]-module W such that the
following assertions hold, where k denotes the centralizer field LFp[G](W ), and
m = dimk(W ), and q = |k| :

(i) U is a finite elementary abelian p-group, contained in the abelian mini-socle
MA(G);

(ii) U is isomorphic as an Fp[G]-module to the direct sum of a number `+ 1 of
copies of W , and ` > m;

(iii) q is a power of p and qm + qm−1 + · · ·+ q + 1 = n.

Proof. — It follows from the hypotheses that every proper subset of F is irre-
ducibly faithful; in particular e 6∈ F . Hence F 6 Fsol(G) by Corollary 4.3. For
every x ∈ F , it follows that the group 〈〈x〉〉G is finite soluble, and therefore has
an abelian socle. Since socles are characteristic subgroups, this socle is a finite
abelian normal subgroup of G, hence it contains an abelian mini-foot of G. We
may therefore choose bx ∈ 〈〈x〉〉G such that 〈〈bx〉〉G is an abelian mini-foot of G.

We set F ′ = {bx | x ∈ F}, so that |F ′| 6 |F | = n. Since bx ∈ 〈〈x〉〉G, we see that
F ′ is irreducibly unfaithful, because F itself has that property. If |F ′| < n, then F ′
would be faithful since G has P(n− 1), a contradiction. Thus |F ′| = n, and every
proper subset of F ′ is irreducibly faithful. We may therefore apply Lemma 4.4 to
the set F ′. We denote by p, U ′ = 〈〈F ′〉〉G, W , m, q the various objects afforded
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in that way. Then Properties (i) and (ii) are satisfied by U ′. Moreover we have
qm + qm−1 + · · ·+ q + 1 6 n. Observe that m > 1 and q > p > 2, so that n > 3. If
we had qm + qm−1 + · · ·+ q+ 1 6 n− 1, then G would not have Property P(n− 1)
by Lemma 4.1. Therefore Property (iii) is also satisfied by U ′. It remains to show
that U ′ = U , i.e., that U ′ = 〈〈F 〉〉G.

Since bx ∈ 〈〈x〉〉G for all x ∈ F , we have U ′ = 〈〈F ′〉〉G 6 〈〈F 〉〉G. Thus it suffices
to show that F is contained in U ′. Assume for a contradiction that this is not the
case, and let y ∈ F be such that y /∈ U ′. Since F ′ r {by} is irreducibly faithful,
there exists an irreducible unitary representation ρ of G such that ρ(bx) 6= 1 for
all x ∈ F r {y}. Let B = U ′ ∩ Ker(ρ). By Lemma 2.8 and Proposition 2.15, the
Fp[G]-module U ′/B is cyclic. In particular, it is isomorphic to a direct sum of j
copies of W , for some j ∈ {1, . . . ,m}, by Lemma 3.4. (The case j = 0 is excluded
since n > 3.)

Let r : G � G/B = Q be the canonical projection. We have seen that r(U ′) =
U ′/B is a cyclic Fp[Q]-module. Thus U ′/B has a Q-faithful unitary character by
Proposition 2.15.

Since y 6∈ U ′, we have r(y) /∈ r(U ′). Since F is contained in Fsol(G), it follows
that 〈〈r(y)〉〉Q is soluble finite, i.e., r(y) ∈ Fsol(Q). In particular the socle of 〈〈r(y)〉〉Q
is abelian. We may therefore choose b′y ∈ 〈〈r(y)〉〉Q such that 〈〈b′y〉〉Q is an abelian
mini-foot of Q. Now we discuss the structure of 〈〈b′y〉〉Q, in order to achieve a
contradiction.

Since 〈〈b′y〉〉Q is a mini-foot of Q, it follows that 〈〈b′y〉〉Q may be viewed as a simple
Z[Q]-module (see Remark 2.12). In particular the normal subgroup

N = r(U ′)〈〈b′y〉〉Q

is a semi-simple Z[Q]-module, by Proposition 2.14.
We claim that N is not cyclic as a Z[Q]-module. Suppose by contradiction

that N is cyclic. Then N has a Q-faithful unitary character by Proposition 2.15.
Therefore Q has an irreducible unitary representation whose restriction to N is
faithful, by Lemma 2.9. It follows that the set r(F ′ r {by}) ∪ {b′y} is irreducibly
faithful in Q. Notice that, if the kernel of a unitary representation of Q contains
r(x) for some x in Fr{y}, then it contains r(bx) since bx ∈ 〈〈x〉〉G. Similarly, if that
kernel contains r(y), then it contains b′y. Since r(F ′ r {by}) ∪ {b′y} is irreducibly
faithful in Q, we infer that the set r(F ) is irreducibly faithful in Q. Hence F is
irreducibly faithful in G, a contradiction. This confirms that the Z[Q]-module N is
not cyclic. Since r(U ′) = U ′/B is cyclic, we deduce that b′y 6∈ r(U ′). In particular,
we have N = r(U ′)× 〈〈b′y〉〉Q.

Since Q is a quotient of G, we may view any Z[Q]-module as a Z[G]-module. We
have seen above that r(U ′) is a cyclic Fp[Q]-module, hence a cyclic Z[G]-module.
Since r(U ′) is a quotient of U ′, it is isomorphic, as a Z[G]-module, to a direct
sum of copies of W . If 〈〈b′y〉〉Q were not isomorphic to W as a Z[G]-module, it
would follow that the decomposition N = r(U ′) × 〈〈b′y〉〉Q would be the isotypical
decomposition of N . Since 〈〈b′y〉〉Q is a simple module, it is cyclic, and it would
follow from Lemma 3.8 that N is a cyclic Z[G]-module as well. This contradicts
the claim above. We infer that 〈〈b′y〉〉Q is abelian of exponent p, and isomorphic to
W as an Fp[G]-module.
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For each x ∈ F r {y}, the image r(bx) is contained in a simple Fp[G]-submodule
of N contained in r(U ′). Since r(U ′) = U ′/B is a direct sum of j 6 m copies of W ,
we deduce from Lemma 3.5 that r(U ′) contains qj−1+· · ·+q+1 simple submodules.
Since N is a direct sum of j+1 copies ofW , it contains qj+qj−1 + · · ·+q+1 simple
submodules. Since qj > 2, we deduce that N contains a simple Fp[G]-submodule
C which is neither contained in r(U ′) nor equal to 〈〈b′y〉〉Q. The quotient N/C is
a direct sum of at most j 6 m copies of W , and thus is cyclic by Lemma 3.4.
Therefore Q/C has an irreducible unitary representation whose restriction to N/C
is faithful, by Lemma 2.9 and Proposition 2.15. By construction, every element
of r(F ′ r {by}) ∪ {b′y} has a non-trivial image in N/C. We conclude that the set
r(F ′r{by})∪{b′y} is irreducibly faithful in Q. Therefore, as in the proof of the claim
above, we deduce that the set r(F ) is also irreducibly faithful in Q. In particular
F is irreducibly faithful in G. This final contradiction finishes the proof. �

4.4. End of proof of Theorem 1.1 and proof of Corollary 1.9.
Proof of (1) ⇒ (2) in Theorem 1.1. — Let n be a positive integer and G a

countable group for which (1) of Theorem 1.1 holds, i.e., a group which does not
have Property P(n). Upon replacing n by a smaller integer, we may assume that
G has Property P(n− 1). (Recall that Property P(0) holds for any group.)

Let F ⊂ G be an irreducibly unfaithful subset of size n. We invoke Theorem 4.5.
This shows that U = 〈〈F 〉〉G is a finite normal subgroup which is an elementary
abelian p-group, and which is isomorphic to a direct sum of `+ 1 copies of a simple
Fp[G]-module W of dimension m over k = LFp[G](W ), where ` > m. In particular
U has a submodule V which is isomorphic to a direct sum of m + 1 copies of W .
This proves that (2) holds. �

Proof of Corollary 1.9. — That (i) implies (ii) is clear. That (ii) implies (iii)
follows from Theorem 1.1.

Assume that (iii) holds. If MA(G) = {e}, then (i) holds by Theorem 2.2. If
not, let A be a non-trivial finite abelian normal subgroup of G contained in the
mini-socle. Let p be a prime dividing |A|; let Ap be the p-Sylow subgroup of A.
Then Ap is a finite Fp[G]-module, which is semi-simple because A, hence also Ap,
is generated by mini-feet of G. Since (iii) holds, Ap is a finite simple Fp[G]-module.
By Lemma 2.13 and Proposition 3.9, Ap is generated by a single conjugacy class.
Since that holds for all p dividing |A|, it follows that A is generated by a single
conjugacy class (see Lemmas 2.13 and 3.8). Therefore G is irreducibly faithful by
Theorem 2.2. Thus (i) holds. �

5. Irreducibly injective sets

5.1. Property Q(n). Recall from Subsection 1.5 that a subset F of a group G is
called irreducibly injective if G has an irreducible unitary representation π such
that the restriction π|F is injective. We say that G has Property Q(n) if every
subset of G of size 6 n is irreducibly injective.

As mentioned earlier, the fact that every group has P(1) is a classical result of
Gelfand–Raikov. That every group has Q(1) is a trivial fact.

The goal of this section is to compare properties P(m) and Q(n). For a group
G written multiplicatively and for a subset F of G, we define

FF−1 = {z ∈ G | z = xy−1 for some x, y ∈ F}.
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(When G is abelian and written additively, this is the same as the subset F − F
defined in Section 3.) To a subset F of G, we associate a subset

(
F
2
)
of G r {e}

defined as follows. Let F 2
6= be a subset of F × F consisting of exactly one of each

(x, y), (y, x), for x, y ∈ F with x 6= y. Then(
F

2

)
= {z ∈ Gr {e} | z = xy−1 for some (x, y) ∈ F 2

6=}.

In particular, if F is a singleton, then
(
F
2
)
is empty; if F is finite of some size n > 2,

then |
(
F
2
)
| 6

(
n
2
)
. Note that

(
F
2
)
involves an arbitrary choice (its dependence on F

is not canonical), even though it is not apparent in the notation.
The following lemma records the most straightforward implications between

Properties P and Q.
Lemma 5.1. — Let G be a group and n a positive integer.
(i) Let F be a finite subset of G of size n; let E be a finite subset of the

form
(
F
2
)
. Then F is irreducibly injective if and only if E is irreducibly

faithful.
(ii) If G has P

((
n
2
))
, then G has Q(n). In particular G has Q(2).

(iii) If G has Q(n+ 1), then G has P(n).
Proof. — Claim (i) follows from the definitions.
For (ii), let F ⊂ G be a subset of size at most n. Let E ⊂ Gr {e} be a subset

of the form
(
F
2
)
. Since G has P

((
n
2
))
, and as |E| 6

(
n
2
)
, there exists an irreducible

unitary representation π of G such that π(z) 6= id for all z ∈ E. It follows that
π(xy−1) 6= id for all (x, y) ∈ F 2

6=, i.e., π(x) 6= π(y) for all (x, y) ∈ F 2 with x 6= y.
Hence G has Q(n). Applying this fact to n = 2, and recalling that every group has
P(1), we deduce that every group has Q(2).

For (iii), let F ⊂ G be a subset of size at most n. Since G has Q(n+ 1), the set
F ∪ {e} is irreducibly injective. �

Claim (iii) will be strengthened in Proposition 5.3.
Lemma 5.1 implies that a group has Property Q(n) for all n > 1 if and only if it

has Property P(n) for all n > 1. Observe moreover that a group which has a faithful
irreducible unitary representation has Property Q(n) for all n > 1. Therefore, our
Corollary 1.9 can be completed as follows:

Corollary 5.2. — For a countable group G, the equivalent assertions (i)–(iii)
from Corollary 1.9 are also equivalent to:

(iv) G has Q(n) for all n > 1.
5.2. Q(n) implies P(n). Using Theorem 1.1, we obtain for countable groups the
following small improvement of Lemma 5.1(iii).

Proposition 5.3. — If a countable group has Q(n) for some n > 1, then it
also has P(n).

Proof. — Since every group has Q(1) and P(1), we may assume that n > 2.
Let G be a countable group satisfying Q(n). By Lemma 5.1(iii), the group G has
P(n− 1).

Suppose for a contradiction that G does not have P(n). We may then invoke
Theorem 1.1. Let V,m, q be as in Theorem 1.1(2); in particular V is a finite
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abelian normal subgroup of G and we have qm + · · · + q + 1 6 n. If we had
qm+ · · ·+q+1 < n, then the other implication of Theorem 1.1 would imply that G
does not have P(n−1), in contradiction with the previous paragraph. We conclude
that qm + · · ·+ q + 1 = n.

By Lemma 3.7, the group V has a subset F of size qm+ · · ·+ q+ 1 such that the
set F−F contains a non-zero element of each abelian mini-foot of G contained in V .
By Lemma 4.1, given an irreducible unitary representation π of G, the kernel Ker(π)
intersects V non-trivially. More precisely, Ker(π) contains an abelian mini-foot of
G contained in V , and hence a non-zero element of F − F . Therefore π(x) = π(y)
for some x 6= y ∈ F . This proves that F is not irreducibly injective. Since |F | = n,
we deduce that G does not have Q(n), a contradiction. �

5.3. The constant α(q,m). Theorem 5.8, which is the main result of this section,
depends on technical results for which we introduce the following notation. Let q
be a power of some prime p and m > 1 be an integer. Let G(q,m) = GL(W )nV be
the group defined in Example 1.6, whose notation is retained here. We define

α(q,m)

as the smallest cardinality of a subset F ⊂ V such that the difference set F −
F contains a non-zero vector of each of the qm + · · · + q + 1 simple Fp[G(q,m)]-
submodules of V . Lemma 3.7 implies that the inequality

α(q,m) 6 q
m + · · ·+ q + 1

holds for all q and m. The following result shows that the constant α(q,m) is
somehow independent of the group G(q,m).

Lemma 5.4. — Let G be a group. Suppose that there exist a prime p, a positive
integer m, a finite simple Fp[G]-module W of dimension m over k = LFp[G](W ),
and a finite normal subgroup V of G which is an elementary abelian p-group and
which is isomorphic as Fp[G]-module to the direct sum of m+ 1 copies of W .

Then α(q,m) is equal to the smallest cardinality of a subset F ⊂ V such that
F − F contains a non-zero element of each of the simple Fp[G]-submodules of V .

Proof. — We start with a preliminary observation. Consider a ring R, a simple
R-module S, and a semi-simple R-module U which is a direct sum of ` copies of S.
Then every simple submodule of U is isomorphic to S, as an R-module. This follows
by a straightforward induction on `, using Goursat’s lemma (Lemma 3.1).

We return now to the situation of the lemma. The fact that W is a k[G]-module
yields a homomorphism G → GLm(k) = GL(W ). Set L = GL(W ), where W is
viewed as a vector space over k. We may view V both as an Fp[G]-module and as
an Fp[L]-module. Note that LFp[G](W ) = k = LFp[L](W ).

By the preliminary observation, every simple Fp[L]-submodule of V is isomorphic
to W , as an Fp[L]-module. In particular, each of them is also a simple Fp[G]-
submodule of V . In view of Lemma 3.5, we deduce that the additive subgroups of
V which are simple Fp[G]-submodules of V are exactly the additive subgroups of
V which are simple Fp[L]-submodules of V . The required assertion follows. �

Clearly, we have (
α(q,m)

2

)
> qm + · · ·+ q + 1.
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The following lemma provides the values of α(q,m) for some small q and m. The
proof of the last item was computer-aided. We are grateful to Max Horn for having
independently checked the result.

Lemma 5.5. — With the notation α(q,m) defined above, we have:
(i) α(2,1) = 3.
(ii) α(3,1) = α(4,1) = α(5,1) = 4.
(iii) α(7,1) = α(8,1) = α(2,2) = 5.
(iv) α(9,1) = 6.

Proof. — Consider as above the group G(q,m) = GL(W )nV . Recall that q = |k|,
m = dimk(W ), and V = W ⊕ · · · ⊕W (m+ 1 times).

If m = 1, the simple Fp[k×]-submodules of V coincide with the 1-dimensional
subspaces of V = k2. As noticed above, we have

(α(q,1)
2
)
> q + 1. For q = 2

[respectively, 3 6 q 6 5, 7 6 q 6 9], this implies α(2,1) > 3 [respectively α(q,1) > 4,
α(q,1) > 5]. For q ∈ {2, 3, 4, 5, 7, 8}, to show that this lower bound on α(q,1) is
attained, it suffices to exhibit a subset F ⊂ V of the corresponding size such that
F −F has the required property. One can check that the following sets do the job,
where the elements of the prime field Fp are denoted by 0, 1, . . . , p− 1.

For q = 2, we set F = {(0, 0), (1, 0), (0, 1)}.
For q = 3, we set F = {(0, 0), (0, 1), (1, 0), (1, 1)}.
For q = 4, we set F = {(0, 0), (1, 0), (0, 1), (1, x)}, where k has been identified

with F2[x]/(x2 + x+ 1).
For q = 5, we set F = {(0, 0), (1, 0), (0, 1), (3, 4)}.
For q = 7, we set F = {(0, 0), (1, 0), (0, 1), (2, 3), (5, 2)}.
For q = 8, we set F = {(0, 0), (1, 0), (0, 1), (1, x), (x2 + x, x2)}, where k has been

identified with F2[x]/(x3 + x+ 1).
For q = 9, the situation is different. We know that

(α(9,1)
2
)
> 10, so that α(9,1) >

5. With the help of a computer, we checked that no subset F in V of size 5 is such
that F −F contains a non-zero vector of each of the 10 one-dimensional subspaces
of V . On the other hand, one verifies that the set

F = {(0, 0), (1, 0), (0, 1), (0, 2), (0, x), (2, 2x+ 1)}

has this property, where k has been identified with F3[x]/(x2 − x − 1). Thus
α(9,1) = 6.

Finally, consider the case of m = 2 and q = 2. Since
(α(2,2)

2
)
> 22 + 2 + 1 = 7,

we have α(2,2) > 5. Let a be a non-zero vector in W . One checks that the set

F = {(0, 0, 0), (a, 0, 0), (0, a, 0), (0, 0, a), (a, a, a)}

satisfies the required condition, so that α(2,2) = 5. �

5.4. P(
(
n
2
)
− 1) sometimes implies Q(n). We are now ready to present the main

technical result of this section. It may be viewed as a supplement to Lemma 5.1(ii).

Proposition 5.6. — Let n be an integer, n > 3. Let G be a countable group
with Property P

((
n
2
)
− 1
)
. Assume that, for all pairs (q,m) consisting of a prime

power q and an integer m such that qm + · · ·+ q + 1 =
(
n
2
)
, we have α(q,m) > n.

Then G has Q(n).
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Proof. — Suppose for a contradiction that G does not have Q(n). Let F ⊂ G be
a subset of size 6 n which is not irreducibly injective in G. Upon replacing F by
Fx−1 for some x ∈ F , we may assume without loss of generality that F contains
the neutral element e.

Let E ⊂ Gr {e} be a subset of the form
(
F
2
)
; recall that |E| 6

(
n
2
)
. Since e ∈ F ,

we may choose E in such a way that E contains F r {e}. It follows from Lemma
5.1(i) that E is irreducibly unfaithful. Since G has P

((
n
2
)
− 1
)
by hypothesis, we

deduce that |E| =
(
n
2
)
. Set U = 〈〈E〉〉G. Since F r {e} ⊂ E, we have F ⊂ U .

We invoke Theorem 4.5 and use its notation, except for F there being E here.
In particular, there exist a prime p and a simple Fp[G]-module W such that U is
isomorphic as an Fp[G]-module to the direct sum of ` + 1 copies of W for some
` > m. By Theorem 4.5(iii), we have qm + · · ·+ q + 1 =

(
n
2
)
. Set V =

⊕m
0 W .

We next claim that there exists a surjective map of Fp[G]-modules r : U � V
whose restriction to F is injective. If ` = m, then U = V and r can be defined as
the identity map. If ` > m, we proceed by induction on `−m. Lemma 3.5 ensures
that the number of simple Fp[G]-submodules of U is strictly larger than

(
n
2
)
. Since(

n
2
)

= |E|, there exists a simple Fp[G]-submodule U0 of U such that U0 ∩E = {0}.
If r0 : U � U/U0 denotes the quotient map, we have Ker(r0) ∩ E = {0}, and it
follows that the restriction of r0 to F is injective. Since U/U0 is isomorphic to a
direct sum of ` copies of W , the induction hypothesis guarantees the existence of
a surjective map of Fp[G]-modules r1 : U/U0 � V whose restriction to r0(F ) is
injective. The map r = r1 ◦ r0 : U � V satisfies the required property. This proves
the claim.

Set E′ = r(E), F ′ = r(F ) and K = Ker(r). Since K is an Fp[G]-submodule of
U , we may view it as a normal subgroup of G. We view E′, F ′ and V as subsets of
the quotient group G′ = G/K; observe that E′ ⊂ G′r{e} is of the form

(
F ′

2
)
. Since

F is not irreducibly injective in G, it follows that F ′ is not irreducibly injective in
G′. Hence E′ is not irreducibly faithful in G′. Therefore E′ contains a non-zero
element in each of the simple submodules of V , by Lemma 4.1. Recalling that
E′ ⊂ F ′−F ′, we deduce from Lemma 5.4 that α(q,m) 6 |F ′|. Since |F ′| = |F | = n,
this contradicts the hypothesis that α(q,m) > n. �

Remark 5.7. — As mentioned in Section 1.1, the Goormaghtigh Conjecture pre-
dicts that for every integer `, there exists at most one prime power q and one
positive integer m such that qm + · · ·+ q+ 1 = `, except for ` = 31. Since 31 is not
of the form

(
n
2
)
, that conjecture predicts that the condition from Proposition 5.6

needs to be checked for at most one value of q and m, once the integer n is fixed.

Theorem 5.8. — Let G be a group. Then G has Properties P(2) and Q(2).
Suppose moreover that G is countable; then:

(i) G has Q(3) if and only if G has P(3).
(ii) G has Q(4) if and only if G has P(6).
(iii) G has Q(5) if and only if G has P(9).

Proof. — By Lemma 5.1(ii), Property P(
(
n
2
)
) implies Q(n). For n = 3, and 4,

this yields P(3) ⇒ Q(3) and P(6) ⇒ Q(4). By Proposition 5.3, we have Q(3) ⇒
P(3).

Among other things, this proves (i).
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Let now G be a countable group that does not satisfy P(6). To show (ii), it
remains to show that G does not have Q(4). We may assume that G has Q(3),
since otherwise we are already done. Hence, G has P(3) by (i). Let n be the least
integer such that G does not have P(n). Hence n is one of 4, 5, or 6.

If n = 4, we deduce from Theorem 1.1 that G contains a normal subgroup V
isomorphic to F3⊕F3, on which the G-action is by scalar multiplication. Let π be
an irreducible unitary representation of G. Set Q = G/Ker(π) and let r : G � Q
be the canonical projection. By Proposition 2.1(7), the subgroup r(V ) 6 Q is gen-
erated by abelian mini-feet of Q, and it is an elementary abelian 3-group. Suppose
that r(V ) were isomorphic to V ; note that Q would act on V by scalar multiplica-
tion; since Q is irreducibly faithful, hence has Property P(4), this would contradict
Theorem 1.1. Hence the restriction of r to V cannot be faithful. (Note moreover
that, for each of the simple F3[G]-modules W contained in V , the restriction to W
of the projection r is either injective or the zero map.) Therefore Ker(r) = Ker(π)
contains at least one of the 4 cyclic subgroups of order 3 of V . Lemma 5.5 yields a
subset F of V of size 4 such that F − F contains a non-trivial element of each of
the 4 cyclic subgroups of order 3 of V . Therefore π(a) = π(b) for some a, b distinct
in F . This shows that G does not have Property Q(4).

If n = 5 and n = 6, similar arguments using Lemmas 5.4 and 5.5 apply, each
time with |F | = 4. This confirms that (ii) holds.

Arguing similarly using Theorem 1.1 and Lemma 5.5, we see that Q(5) implies
P(9). Conversely, invoking Proposition 5.6 for n = 5, we deduce that P(9) implies
Q(5) since α(9,1) = 6 by Lemma 5.5. This proves (iii). �

5.5. From Q(n) to additive combinatorics. Theorem 5.8 suggests the following
question.

Question 5.9. — Can we characterize Property Q(n) by an algebraic property
of G, in the same vein as in Theorem 1.1 ?

In particular, is it true that, for each n > 1, there exists an integer f(n) > 1 such
that a countable group G has Property Q(n) if and only if it has Property P(f(n)) ?

The proof of Theorem 5.8 suggests that an answer to Question 5.9 might require
to compute the numbers α(q,m) for all (q,m). This is confirmed by the following
observation.

Observation 5.10. — The group G(q,m) from Example 1.6 has the Property
Q(α(q,m) − 1), but not Q(α(q,m)).

Proof. — That G = G(q,m) does not have Q(α(q,m)) follows from the definition
and from Lemma 5.1, in view of Theorem 1.1.

In order to show that G(q,m) has Q(α(q,m)− 1), we fix a subset F of G such that
|F | < α(q,m). We shall prove that FF−1 is irreducibly faithful. This implies that
F is irreducibly injective, as required. Modules below refer to the ring Fp[G].

Notice that FF−1 remains unchanged when F is replaced by a translate Fg, for
some g ∈ G. Without loss of generality we may thus assume that F contains e. In
particular F ⊆ FF−1.

Let {g1, . . . , gk} ⊂ G be a set of minimal cardinality such that F ⊂
⋃k
i=1 V gi.

For each i, set Fi = F ∩ V gi. Notice that if x ∈ Fi and y ∈ Fj with i 6= j, then
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xy−1 6∈ V because gig−1
j /∈ V . Therefore the intersection FF−1 ∩ V coincides with⋃k

i=1 FiF
−1
i . For each i, we set F ′i = Fig

−1
i , and set F ′ =

⋃k
i=1 F

′
i . Hence

(]) |F ′| 6 |F |, F ′ ⊆ V and F ′(F ′)−1 ⊇ FF−1 ∩ V.
We next observe that, if W is any simple submodule of V , then the quotient

group G/W is irreducibly faithful. This follows from Theorem 1.1 and Corollary 1.9
(using a similar argument as in the discussion of Example 1.6). Therefore, if FF−1

were not irreducibly faithful, then it would contain a non-zero element of each
simple submodule of V . By (]), F ′(F ′)−1 would also contain a non-zero element
of each simple submodule of V . This would contradict the sequence of inequalities
|F ′| 6 |F | < α(q,m). It follows that FF−1 is irreducibly faithful, and this ends the
proof. �

In particular, answering Question 5.9 for Cp ×Cp = G(p,1) amounts to compute
α(p,1). This happens to be an open problem in additive combinatorics, see Ques-
tion 5.2 in [9]. As pointed out in this reference, the value of α(p,1) = np can be
estimated as follows. On the one hand, since

n2
p

2 >

(
np
2

)
> p+ 1 > p,

we have np >
√

2p. On the other hand, using Theorems 1.2 and 2.1 from [11], we
obtain the upper bound

np 6 2d√pe+ 1.
However, determining the exact value of np remains an open problem. We are
grateful to Ben Green for point out the reference [9] and for discussing it with us.

Appendix A. A finite group all of whose irreducible
representations have non-abelian kernels

We know from Proposition 2.16 that every countable group G has an irreducible
unitary representation whose kernel is contained in Fsol(G), and we have cited in
Remark 2.18 the result according to which every finite group has an irreducible
representation with nilpotent kernel. Short of having found in the literature ap-
propriate references for groups without irreducible representations having abelian
kernels, we indicate here an example, long known to experts.

Let D8 denote the dihedral group of order 8. The centre of D8 is cyclic of order 2.
For i = 1, 2, 3, let Hi be a group isomorphic to D8, and let zi be the non-trivial
element of the centre of Hi. We set

G = (H1 ×H2 ×H3)/〈z1z2z3〉.
Thus G is a nilpotent group of order 28 = 256. Its centre Z(G) is isomorphic to
C2×C2. The socle of G coincides with its centre, and Fsol(G) is the group G itself
(see Example 2.4(6)).

Proposition A.1. — For every abelian normal subgroup N in G, the centre of
the quotient G/N is not cyclic.

Proof. — The natural homomorphism H1×H2×H3 → G induces an embedding
Hi → G for each i. We identify Hi with its image in G. In particular we view
z1, z2, z3 as elements of G. The centre of G is Z(G) = {e, z1, z2, z3}.
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We assume for a contradiction that N is an abelian normal subgroup of G such
that G/N has a cyclic centre. Since the centre of G is not cyclic, we have N 6= {e}.
Let r : G� G/N be the canonical projection.

Let i ∈ {1, 2, 3}. Since N is abelian and Hi is not, r(Hi) ∼= Hi/Hi ∩N is non-
trivial. In particular r(Hi) has a non-trivial centre. We may thus choose an element
hi ∈ Hi such that r(hi) is a non-trivial element of the centre Z(r(Hi)). SinceH1, H2
and H3 commute pairwise in G, and since G is generated by these subgroups, we
have Z(Hi) 6 Z(G) and Z(r(Hi)) 6 Z(r(G)). In particular r(hi) ∈ Z(G/N).

Since G is a 2-group, every non-trivial normal subgroup has a non-trivial inter-
section with the centre Z(G). Thus there exists j ∈ {1, 2, 3} such that zj ∈ N .
Since Z(G/N) is cyclic and Z(r(Hj)) 6 Z(G/N), it follows that Z(r(Hj)) is
cyclic. Since N ∩ Hj is a non-trivial normal subgroup of Hj

∼= D8, the quotient
r(Hj) ∼= Hj/(N ∩Hj) is abelian. Therefore, it coincides with its centre, hence it is
cyclic. The only abelian normal subgroups of Hj

∼= D8 affording a cyclic quotient
group are its subgroups of index 2. Thus r(Hj) ∼= Hj/(N ∩ Hj) is of order 2. In
particular N ∩Hj is a maximal subgroup of Hj , and r(hj) is of order 2. Moreover
we have Hj = 〈hj〉(N ∩Hj) since r(hj) 6= e and hence hj 6∈ N ∩Hj .

Let now i ∈ {1, 2, 3} such that i 6= j. We know that Z(G/N) is cyclic, and that
r(hi) and r(hj) are two non-trivial elements in Z(G/N). Since moreover r(hj) is of
order 2, we infer that r(hi)kr(hj) = e for some integer k. In other words hki hj ∈ N .
Since N is abelian, it follows that hki hj commutes with N ∩ Hj . Moreover hi
commutes with Hj , hence hki commutes with N ∩Hj . It follows that hj commutes
with N ∩ Hj . Since N is abelian and since Hj = 〈hj〉(N ∩ Hj), it follows that
Hj
∼= D8 is abelian, which is absurd. �

By Schur’s Lemma, the image π(G) of G under any irreducible representation π
has cyclic centre. It follows from Proposition A.1 that the kernel of π cannot be
abelian. Thus we obtain:

Corollary A.2. — Every irreducible representation of G has a non-abelian
kernel.

Here is another proof of Corollary A.2. Let z denote the non-trivial element of
the centre of D8. The group D8 has 4 irreducible representations of degree 1, of
which the kernels contain z, and one irreducible representation π of degree 2, such
that π(z) = −id. Consequently, the group H1 ×H2 ×H3 has

— 64 irreducible representations of degree 1,
— 48 irreducible representations of degree 2,
— 12 irreducible representations of degree 4,
— 1 irreducible representation of degree 8,

and the irreducible representations having kernels containing z1z2z3 are precisely
those of dimensions 1 and 4. It follows that G has 64 irreducible representations
of degree 1, none of them with abelian kernel, and 12 irreducible representations of
degree 3, each having a kernel isomorphic to D8.
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