We study the long time behaviour of a dynamical system strongly linked to the nondiffusive scheme of Després and Lagoutiere for the -dimensional transport equation. This scheme is nondiffusive in the sense that discontinuities are not smoothened out through time. Numerical simulations indicate that the scheme error is uniformly bounded with time. We prove that this scheme is overcompressive when the Courant–Friedrichs–Levy number is : when the initial data is nondecreasing, the approximate solution becomes a Heaviside function. In a special case, we also understand how plateaus are formed in the solution and their stability, a distinctive feature of the Després and Lagoutière scheme.
Revised:
Accepted:
Published online:
Keywords: 1-dimensional transport equation, nondiffusive scheme, dynamics, asymptotic behavior
Nina Aguillon 1; Pierre-Antoine Guihéneuf 2
@article{CML_2020__12_1_3_0, author = {Nina Aguillon and Pierre-Antoine Guih\'eneuf}, title = {Dynamical behavior of a nondiffusive scheme for the advection equation}, journal = {Confluentes Mathematici}, pages = {3--29}, publisher = {Institut Camille Jordan}, volume = {12}, number = {1}, year = {2020}, doi = {10.5802/cml.60}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.60/} }
TY - JOUR AU - Nina Aguillon AU - Pierre-Antoine Guihéneuf TI - Dynamical behavior of a nondiffusive scheme for the advection equation JO - Confluentes Mathematici PY - 2020 SP - 3 EP - 29 VL - 12 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.60/ DO - 10.5802/cml.60 LA - en ID - CML_2020__12_1_3_0 ER -
%0 Journal Article %A Nina Aguillon %A Pierre-Antoine Guihéneuf %T Dynamical behavior of a nondiffusive scheme for the advection equation %J Confluentes Mathematici %D 2020 %P 3-29 %V 12 %N 1 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.60/ %R 10.5802/cml.60 %G en %F CML_2020__12_1_3_0
Nina Aguillon; Pierre-Antoine Guihéneuf. Dynamical behavior of a nondiffusive scheme for the advection equation. Confluentes Mathematici, Volume 12 (2020) no. 1, pp. 3-29. doi : 10.5802/cml.60. https://cml.centre-mersenne.org/articles/10.5802/cml.60/
[1] Almost Periodic Functions, Chelsea Publishing Company, New York, N.Y., 1947, ii+114 pages | MR
[2] Convergent and conservative schemes for nonclassical solutions based on kinetic relations. I, Interfaces Free Bound., Volume 10 (2008) no. 3, pp. 399-421 | DOI | MR | Zbl
[3] Finite volume transport schemes, Numer. Math., Volume 108 (2008) no. 4, pp. 529-556 | DOI | MR | Zbl
[4] Stability of high order finite volume schemes for the 1D transport equation, Finite volumes for complex applications V, ISTE, London, 2008, pp. 337-342 | MR | Zbl
[5] Contact discontinuity capturing schemes for linear advection and compressible gas dynamics, J. Sci. Comput., Volume 16 (2001) no. 4, p. 479-524 (2002) | DOI | MR | Zbl
[6] Numerical methods for conservation laws, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1992, x+214 pages | DOI | MR | Zbl
[7] Correction and remarks: “On the concept of attractor”, Comm. Math. Phys., Volume 102 (1985) no. 3, pp. 517-519 http://projecteuclid.org/euclid.cmp/1104114467 | DOI | MR
[8] On the concept of attractor, Comm. Math. Phys., Volume 99 (1985) no. 2, pp. 177-195 http://projecteuclid.org/euclid.cmp/1103942677 | DOI | MR | Zbl
[9] Attractor, Scholarpedia, Volume 1 (2006) no. 11, p. 1815 (revision #186525) | DOI
Cited by Sources: