A Survey on Fixed Divisors
Confluentes Mathematici, Volume 11 (2019) no. 1, pp. 29-52.

In this article, we compile the work done by various mathematicians on the topic of the fixed divisor of a polynomial. This article explains most of the results concisely and is intended to be an exhaustive survey. We present the results on fixed divisors in various algebraic settings as well as the applications of fixed divisors to various algebraic and number theoretic problems. The work is presented in an orderly fashion so as to start from the simplest case of , progressively leading up to the case of Dedekind domains. We also ask a few open questions according to their context, which may give impetus to the reader to work further in this direction. We describe various bounds for fixed divisors as well as the connection of fixed divisors with different notions in the ring of integer-valued polynomials. Finally, we suggest how the generalization of the ring of integer-valued polynomials in the case of the ring of n×n matrices over (or a Dedekind domain) could lead to the generalization of fixed divisors in that setting.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/cml.54
Classification: 11Sxx, 11S05, 13F20
Keywords: Fixed divisors, Generalized factorials, Generalized factorials in several variables, Common factor of indices, Factoring of prime ideals, Integer valued polynomials
Devendra Prasad 1; Krishnan Rajkumar 2; A. Satyanarayana Reddy 1

1 Department of Mathematics, Shiv Nadar University, Dadri, India-201314
2 School of Computer & Systems Sciences, Jawaharlal Nehru University, India-110067
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CML_2019__11_1_29_0,
     author = {Devendra Prasad and Krishnan Rajkumar and A. Satyanarayana  Reddy},
     title = {A {Survey} on {Fixed} {Divisors}},
     journal = {Confluentes Mathematici},
     pages = {29--52},
     publisher = {Institut Camille Jordan},
     volume = {11},
     number = {1},
     year = {2019},
     doi = {10.5802/cml.54},
     mrnumber = {4002392},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.54/}
}
TY  - JOUR
AU  - Devendra Prasad
AU  - Krishnan Rajkumar
AU  - A. Satyanarayana  Reddy
TI  - A Survey on Fixed Divisors
JO  - Confluentes Mathematici
PY  - 2019
SP  - 29
EP  - 52
VL  - 11
IS  - 1
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.54/
DO  - 10.5802/cml.54
LA  - en
ID  - CML_2019__11_1_29_0
ER  - 
%0 Journal Article
%A Devendra Prasad
%A Krishnan Rajkumar
%A A. Satyanarayana  Reddy
%T A Survey on Fixed Divisors
%J Confluentes Mathematici
%D 2019
%P 29-52
%V 11
%N 1
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.54/
%R 10.5802/cml.54
%G en
%F CML_2019__11_1_29_0
Devendra Prasad; Krishnan Rajkumar; A. Satyanarayana  Reddy. A Survey on Fixed Divisors. Confluentes Mathematici, Volume 11 (2019) no. 1, pp. 29-52. doi : 10.5802/cml.54. https://cml.centre-mersenne.org/articles/10.5802/cml.54/

[1] David Adam Simultaneous orderings in function fields, J. Number Theory, Volume 112 (2005) no. 2, pp. 287-297 | DOI | MR | Zbl

[2] David Adam Pólya and Newtonian function fields, Manuscripta Math., Volume 126 (2008) no. 2, pp. 231-246 | DOI | MR | Zbl

[3] David Adam; Paul-Jean Cahen Newton and Schinzel sequences in quadratic fields, Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 15-20 | DOI | Zbl

[4] David Adam; Paul-Jean Cahen Newtonian and Schinzel quadratic fields, J. Pure Appl. Algebra, Volume 215 (2011) no. 8, pp. 1902-1918 | DOI | MR | Zbl

[5] David Adam; Jean-Luc Chabert; Youssef Fares Subsets of with simultaneous orderings, Integers, Volume 10 (2010), pp. A37, 437-451 | DOI | MR | Zbl

[6] David F. Anderson Elasticity of factorizations in integral domains: a survey, Factorization in integral domains (Iowa City, IA, 1996) (Lecture Notes in Pure and Appl. Math.), Volume 189, Dekker, New York, 1997, pp. 1-29 | MR | Zbl

[7] David F. Anderson; Paul-Jean Cahen; Scott T. Chapman; William W. Smith Some factorization properties of the ring of integer-valued polynomials, Zero-dimensional commutative rings (Knoxville, TN, 1994) (Lecture Notes in Pure and Appl. Math.), Volume 171, Dekker, New York, 1995, pp. 125-142 | MR | Zbl

[8] Mohamed Ayad; Rachid Bouchenna; Omar Kihel Indices in a number field, J. Théor. Nombres Bordeaux, Volume 29 (2017) no. 1, pp. 201-216 http://jtnb.cedram.org/item?id=JTNB_2017__29_1_201_0 | DOI | Numdam | MR | Zbl

[9] Mohamed Ayad; Omar Kihel Common divisors of values of polynomials and common factors of indices in a number field, Int. J. Number Theory, Volume 7 (2011) no. 5, pp. 1173-1194 | DOI | MR | Zbl

[10] Andrea Bandini Functions f:/p n /p n induced by polynomials of [X], Ann. Mat. Pura Appl. (4), Volume 181 (2002) no. 1, pp. 95-104 | DOI | MR

[11] Michael Bauer Über die außerwesentlichen Diskriminantenteiler einer Gattung, Math. Ann., Volume 64 (1907) no. 4, pp. 573-576 | DOI | MR | Zbl

[12] Manjul Bhargava P-orderings and polynomial functions on arbitrary subsets of Dedekind rings, J. Reine Angew. Math., Volume 490 (1997), pp. 101-127 | DOI | MR | Zbl

[13] Manjul Bhargava Generalized factorials and fixed divisors over subsets of a Dedekind domain, J. Number Theory, Volume 72 (1998) no. 1, pp. 67-75 | DOI | MR | Zbl

[14] Manjul Bhargava The factorial function and generalizations, Amer. Math. Monthly, Volume 107 (2000) no. 9, pp. 783-799 | DOI | MR | Zbl

[15] Arnab Bose Investigations on some exponential congruences, University of Lethbridge, Canada (2016) (Masters thesis)

[16] V. Bouniakowsky Nouveaux théorèmes relatifs à la distinction des nombres premiers et à la décomposition des entiers en facteurs, Mém. Acad. Sc. St-Pétersbourg (6), Sci. Math. Phys., Volume 6 (1857), pp. 305-329

[17] Jason Boynton Pullbacks of arithmetical rings, Comm. Algebra, Volume 35 (2007) no. 9, pp. 2671-2684 | DOI | MR | Zbl

[18] Jason G. Boynton; Sean Sather-Wagstaff Regular pullbacks, Progress in commutative algebra 2, Walter de Gruyter, Berlin, 2012, pp. 145-169 | MR | Zbl

[19] Jason Greene Boynton Atomicity and the fixed divisor in certain pullback constructions, Colloq. Math., Volume 129 (2012) no. 1, pp. 87-97 | DOI | MR | Zbl

[20] Jakub Byszewski; Mikołaj Fraczyk; Anna Szumowicz Simultaneous p-orderings and minimizing volumes in number fields, J. Number Theory, Volume 173 (2017), pp. 478-511 | DOI | MR | Zbl

[21] Paul-Jean Cahen Polynômes à valeurs entières, Canad. J. Math, Volume 24 (1972), pp. 747-754 | DOI | Zbl

[22] Paul-Jean Cahen Polynomial closure, J. Number Theory, Volume 61 (1996) no. 2, pp. 226-247 | DOI | MR | Zbl

[23] Paul-Jean Cahen Newtonian and Schinzel sequences in a domain, J. Pure Appl. Algebra, Volume 213 (2009) no. 11, pp. 2117-2133 | DOI | MR | Zbl

[24] Paul-Jean Cahen; Jean-Luc Chabert Elasticity for integral-valued polynomials, J. Pure Appl. Algebra, Volume 103 (1995) no. 3, pp. 303-311 | DOI | MR | Zbl

[25] Paul-Jean Cahen; Jean-Luc Chabert Integer-valued polynomials, Mathematical Surveys and Monographs, 48, American Mathematical Society, Providence, RI, 1997, xx+322 pages | MR | Zbl

[26] Paul-Jean Cahen; Jean-Luc Chabert What you should know about integer-valued polynomials, Amer. Math. Monthly, Volume 123 (2016) no. 4, pp. 311-337 | DOI | MR | Zbl

[27] Paul-Jean Cahen; Jean-Luc Chabert Test sets for polynomials: n-universal subsets and Newton sequences, J. Algebra, Volume 502 (2018), pp. 277-314 | DOI | MR | Zbl

[28] Leonard Carlitz On abelian fields, Trans. Amer. Math. Soc., Volume 35 (1933) no. 1, pp. 122-136 | DOI | MR | Zbl

[29] Leonard Carlitz A note on common index divisors, Proc. Amer. Math. Soc., Volume 3 (1952), pp. 688-692 | DOI | MR | Zbl

[30] Jean-Luc Chabert On the polynomial closure in a valued field, J. Number Theory, Volume 130 (2010) no. 2, pp. 458-468 | DOI | MR | Zbl

[31] Jean-Luc Chabert Integer-valued polynomials: looking for regular bases (a survey), Commutative algebra, Springer, New York, 2014, pp. 83-111 | MR | Zbl

[32] Jean-Luc Chabert; Paul-Jean Cahen Old problems and new questions around integer-valued polynomials and factorial sequences, Multiplicative ideal theory in commutative algebra, Springer, New York, 2006, pp. 89-108 | DOI | MR | Zbl

[33] Jean-Luc Chabert; Scott T. Chapman; William W. Smith The Skolem property in rings of integer-valued polynomials, Proc. Amer. Math. Soc., Volume 126 (1998) no. 11, pp. 3151-3159 | DOI | MR | Zbl

[34] Jean-Luc Chabert; Sabine Evrard On the ideal generated by the values of a polynomial, Arithmetical properties of commutative rings and monoids (Lect. Notes Pure Appl. Math.), Volume 241, Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. 213-225 | DOI | MR | Zbl

[35] Scott T. Chapman; Barbara A. McClain Irreducible polynomials and full elasticity in rings of integer-valued polynomials, J. Algebra, Volume 293 (2005) no. 2, pp. 595-610 | DOI | MR | Zbl

[36] Scott T. Chapman; Vadim Ponomarenko On image sets of integer-valued polynomials, J. Algebra, Volume 348 (2011), pp. 350-353 | DOI | MR | Zbl

[37] Scott T. Chapman; Vadim Ponomarenko; William W. Smith Robert Gilmer’s contributions to the theory of integer-valued polynomials, Multiplicative ideal theory in commutative algebra, Springer, New York, 2006, pp. 109-122 | DOI | MR | Zbl

[38] Zhibo Chen On polynomial functions from Z n to Z m , Discrete Math., Volume 137 (1995) no. 1-3, pp. 137-145 | DOI | MR | Zbl

[39] Geumlan Choi; Alexandru Zaharescu A class of exponential congruences in several variables, J. Korean Math. Soc., Volume 41 (2004) no. 4, pp. 717-735 | DOI | MR | Zbl

[40] Andrew M. Crabbe Generalized factorial functions and binomial coefficients, Undergraduate Honors Thesis, Trinity University, USA, 2001

[41] Leonard Eugene Dickson History of the theory of numbers. Vol. I: Divisibility and primality, Chelsea Publishing Co., New York, 1966, xii+486 pages | MR | Zbl

[42] D. S. Dummit; H. Kisilevsky Indices in cyclic cubic fields, Number theory and algebra, Academic Press, New York, 1977, pp. 29-42 | MR | Zbl

[43] Howard Theodore Engstrom On the common index divisors of an algebraic field, Trans. Amer. Math. Soc., Volume 32 (1930) no. 2, pp. 223-237 | DOI | MR

[44] Sabine Evrard Bhargava’s factorials in several variables, J. Algebra, Volume 372 (2012), pp. 134-148 | DOI | MR | Zbl

[45] Sabine Evrard; Youssef Fares; Keith Johnson Integer-valued polynomials on lower triangular integer matrices, Monatsh. Math., Volume 170 (2013) no. 2, pp. 147-160 | DOI | MR | Zbl

[46] Sabine Evrard; Keith Johnson The ring of integer-valued polynomials on 2×2 matrices and its integral closure, J. Algebra, Volume 441 (2015), pp. 660-677 | DOI | MR | Zbl

[47] Sophie Frisch Substitution and closure of sets under integer-valued polynomials, J. Number Theory, Volume 56 (1996) no. 2, pp. 396-403 | DOI | MR | Zbl

[48] Sophie Frisch Polynomial separation of points in algebras, Arithmetical properties of commutative rings and monoids (Lect. Notes Pure Appl. Math.), Volume 241, Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. 253-259 | DOI | MR | Zbl

[49] Sophie Frisch Integer-valued polynomials on algebras: a survey, Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 27-32 | DOI | Zbl

[50] Sophie Frisch A construction of integer-valued polynomials with prescribed sets of lengths of factorizations, Monatsh. Math., Volume 171 (2013) no. 3-4, pp. 341-350 | DOI | MR | Zbl

[51] Sophie Frisch Integer-valued polynomials on algebras, J. Algebra, Volume 373 (2013), pp. 414-425 | DOI | MR | Zbl

[52] Sophie Frisch Corrigendum to “Integer-valued polynomials on algebras” [J. Algebra 373 (2013) 414–425], J. Algebra, Volume 412 (2014), 282 pages | DOI | MR | Zbl

[53] Robert Gilmer Sets that determine integer-valued polynomials, J. Number Theory, Volume 33 (1989) no. 1, pp. 95-100 | DOI | MR | Zbl

[54] Robert Gilmer The ideal of polynomials vanishing on a commutative ring, Proc. Amer. Math. Soc., Volume 127 (1999) no. 5, pp. 1265-1267 | DOI | MR | Zbl

[55] Robert Gilmer; William W. Smith On the polynomial equivalence of subsets E and f(E) of , Arch. Math. (Basel), Volume 73 (1999) no. 5, pp. 355-365 | DOI | MR | Zbl

[56] Hiroshi Gunji; Donald L. McQuillan On polynomials with integer coefficients, J. Number Theory, Volume 1 (1969), pp. 486-493 | DOI | MR | Zbl

[57] Hiroshi Gunji; Donald L. McQuillan On a class of ideals in an algebraic number field, J. Number Theory, Volume 2 (1970), pp. 207-222 | DOI | MR | Zbl

[58] Richard K. Guy Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York, 1994, xvi+285 pages | DOI | MR | Zbl

[59] Marshall Hall Indices in cubic fields, Bull. Amer. Math. Soc., Volume 43 (1937) no. 2, pp. 104-108 | DOI | MR | Zbl

[60] Harris Hancock Foundations of the theory of algebraic numbers. Vol. II: The general theory, Dover Publications, Inc., New York, 1964, xxvi+654 pages | MR

[61] Robin Hartshorne Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977, xvi+496 pages | DOI | MR | Zbl

[62] Bahar Heidaryan; Matteo Longo; Giulio Peruginelli Galois structure on integral-valued polynomials, J. Number Theory, Volume 171 (2017), pp. 198-212 | DOI | MR | Zbl

[63] Bahar Heidaryan; Ali Rajaei Biquadratic Pólya fields with only one quadratic Pólya subfield, J. Number Theory, Volume 143 (2014), pp. 279-285 | DOI | MR | Zbl

[64] K. Hensel Ueber den grössten gemeinsamen Theiler aller Zahlen, welche durch eine ganze Function von n Veränderlichen darstellbar sind, J. Reine Angew. Math., Volume 116 (1896), pp. 350-356 | DOI | MR | Zbl

[65] István Járási Remarks on P-orderings and simultaneous orderings (Preprint)

[66] J. Latham On sequences of algebraic integers, J. London Math. Soc. (2), Volume 6 (1973), pp. 555-560 | DOI | MR | Zbl

[67] Amandine Leriche Pólya fields and Pólya numbers, Actes des rencontres du CIRM, Volume 2 (2010) no. 2, pp. 21-26 | DOI | Zbl

[68] Amandine Leriche Pólya fields, Pólya groups and Pólya extensions: a question of capitulation, J. Théor. Nombres Bordeaux, Volume 23 (2011) no. 1, pp. 235-249 http://jtnb.cedram.org/item?id=JTNB_2011__23_1_235_0 | DOI | Numdam | MR | Zbl

[69] Amandine Leriche Cubic, quartic and sextic Pólya fields, J. Number Theory, Volume 133 (2013) no. 1, pp. 59-71 | DOI | MR | Zbl

[70] Amandine Leriche About the embedding of a number field in a Pólya field, J. Number Theory, Volume 145 (2014), pp. 210-229 | DOI | MR | Zbl

[71] K. Alan Loper; Nicholas J. Werner Generalized rings of integer-valued polynomials, J. Number Theory, Volume 132 (2012) no. 11, pp. 2481-2490 | DOI | MR | Zbl

[72] Charles R. MacCluer Common divisors of values of polynomials, J. Number Theory, Volume 3 (1971), pp. 33-34 | DOI | MR | Zbl

[73] Daniel A. Marcus Number fields, Springer-Verlag, New York-Heidelberg, 1977, viii+279 pages (Universitext) | MR | Zbl

[74] Donald L. McQuillan On a theorem of R. Gilmer, J. Number Theory, Volume 39 (1991) no. 3, pp. 245-250 | DOI | MR | Zbl

[75] Shashikant B. Mulay On integer-valued polynomials, Zero-dimensional commutative rings (Knoxville, TN, 1994) (Lecture Notes in Pure and Appl. Math.), Volume 171, Dekker, New York, 1995, pp. 331-345 | MR | Zbl

[76] Shashikant B. Mulay Integer-valued polynomials in several variables, Comm. Algebra, Volume 27 (1999) no. 5, pp. 2409-2423 | DOI | MR | Zbl

[77] Shashikant B. Mulay Polynomial-mappings and M-equivalence, J. Algebra, Volume 302 (2006) no. 2, pp. 862-880 | DOI | MR | Zbl

[78] M. Ram Murty; V. Kumar Murty On a problem of Ruderman, Amer. Math. Monthly, Volume 118 (2011) no. 7, pp. 644-650 | DOI | MR | Zbl

[79] Trygve Nagell Über zahlentheoretische Polynome, Norsk. Mat. Tidsskr, Volume 1 (1919), pp. 14-23

[80] Trygve Nagell Quelques résultats sur les diviseurs fixes de l’index des nombres entiers d’un corps algébrique, Ark. Mat., Volume 6 (1966), pp. 269-289 | DOI | MR | Zbl

[81] Władysław Narkiewicz Polynomial mappings, Lecture Notes in Mathematics, 1600, Springer-Verlag, Berlin, 1995, viii+130 pages | DOI | MR | Zbl

[82] Enric Nart On the index of a number field, Trans. Amer. Math. Soc., Volume 289 (1985) no. 1, pp. 171-183 | DOI | MR | Zbl

[83] Alexander Ostrowski Über ganzwertige Polynome in algebraischen Zahlkörpern, J. Reine Angew. Math., Volume 149 (1919), pp. 117-124 | DOI | MR | Zbl

[84] Giulio Peruginelli Integer-valued polynomials over matrices and divided differences, Monatsh. Math., Volume 173 (2014) no. 4, pp. 559-571 | DOI | MR | Zbl

[85] Giulio Peruginelli Integral-valued polynomials over sets of algebraic integers of bounded degree, J. Number Theory, Volume 137 (2014), pp. 241-255 | DOI | MR | Zbl

[86] Giulio Peruginelli Primary decomposition of the ideal of polynomials whose fixed divisor is divisible by a prime power, J. Algebra, Volume 398 (2014), pp. 227-242 | DOI | MR | Zbl

[87] Giulio Peruginelli Factorization of integer-valued polynomials with square-free denominator, Comm. Algebra, Volume 43 (2015) no. 1, pp. 197-211 | DOI | MR | Zbl

[88] Giulio Peruginelli; Nicholas J. Werner Integral closure of rings of integer-valued polynomials on algebras, Commutative algebra, Springer, New York, 2014, pp. 293-305 | MR | Zbl

[89] Giulio Peruginelli; Nicholas J. Werner Properly integral polynomials over the ring of integer-valued polynomials on a matrix ring, J. Algebra, Volume 460 (2016), pp. 320-339 | DOI | MR | Zbl

[90] Georg Pólya Über ganzwertige Polynome in algebraischen Zahlkörpern, J. Reine Angew. Math., Volume 149 (1919), pp. 97-116 | DOI | MR | Zbl

[91] Krishnan Rajkumar; A Satyanarayana Reddy; Devendra Prasad Semwal Fixed Divisor of a Multivariate Polynomial and Generalized Factorials in Several Variables, J. Korean Math. Soc., Volume 55 (2018) no. 6, pp. 1305-1320 | DOI | MR | Zbl

[92] Mark W. Rogers; Cameron Wickham Polynomials inducing the zero function on local rings, Int. Electron. J. Algebra, Volume 22 (2017), pp. 170-186 | DOI | MR | Zbl

[93] Harry Ruderman; David Gale; C. Roger Glassey; G. Tsintsifas; David Shelupsky; Robert Brooks Problems and Solutions: Elementary Problems: E2468-E2473, Amer. Math. Monthly, Volume 81 (1974) no. 4, pp. 405-406 | DOI | MR

[94] Harry Ruderman; Carl Pomerance Problems and Solutions: Solutions of Elementary Problems: E2468, Amer. Math. Monthly, Volume 84 (1977) no. 1, pp. 59-60 | DOI | MR

[95] Harry Ruderman; W. Y. Velez Problems and Solutions: Solutions of Elementary Problems: E2468, Amer. Math. Monthly, Volume 83 (1976) no. 4, pp. 288-289 | DOI | MR

[96] Robert John Rundle Generalization of Ruderman’s Problem to Imaginary Quadratic Fields, Queen’s University, Canada (2012) (Ph. D. Thesis) | MR

[97] Andrzej Schinzel On primitive prime factors of a n -b n , Proc. Cambridge Philos. Soc., Volume 58 (1962), pp. 555-562 | MR | Zbl

[98] Andrzej Schinzel Selecta. Vol. II, Heritage of European Mathematics, European Mathematical Society (EMS), Zürich, 2007, p. i-x and 859–1393 | MR | Zbl

[99] Andrzej Schinzel On fixed divisors of forms in many variables. II, Analytic and probabilistic methods in number theory, TEV, Vilnius, 2012, pp. 207-221 | MR | Zbl

[100] Andrzej Schinzel On fixed divisors of forms in many variables, I, Math. Scand., Volume 114 (2014) no. 2, pp. 161-184 | DOI | MR | Zbl

[101] David Singmaster A maximal generalization of Fermat’s theorem, Math. Mag., Volume 39 (1966), pp. 103-107 | DOI | MR | Zbl

[102] David Singmaster On polynomial functions ( mod m), J. Number Theory, Volume 6 (1974), pp. 345-352 | DOI | MR | Zbl

[103] Jan Śliwa On the nonessential discriminant divisor of an algebraic number field, Acta Arith., Volume 42 (1982/83) no. 1, pp. 57-72 | DOI | MR | Zbl

[104] Blair K. Spearman; Kenneth S. Williams Cubic fields with index 2, Monatsh. Math., Volume 134 (2002) no. 4, pp. 331-336 | DOI | MR | Zbl

[105] Blair K. Spearman; Kenneth S. Williams The index of a cyclic quartic field, Monatsh. Math., Volume 140 (2003) no. 1, pp. 19-70 | DOI | MR | Zbl

[106] Qi Sun; Ming Zhi Zhang Pairs where 2 a -2 b divides n a -n b for all n, Proc. Amer. Math. Soc., Volume 93 (1985) no. 2, pp. 218-220 | DOI | MR | Zbl

[107] Mohammed Taous On the Pólya group of some imaginary biquadratic fields, Non-associative and non-commutative algebra and operator theory (Springer Proc. Math. Stat.), Volume 160, Springer, Cham, 2016, pp. 175-182 | DOI | MR | Zbl

[108] Mohammed Taous; Abdelkader Zekhnini Pólya groups of the imaginary bicyclic biquadratic number fields, J. Number Theory, Volume 177 (2017), pp. 307-327 | DOI | MR | Zbl

[109] Jan Turk The fixed divisor of a polynomial, Amer. Math. Monthly, Volume 93 (1986) no. 4, pp. 282-286 | DOI | MR | Zbl

[110] Marian Vâjâitu Estimations of the ideal generated by the values of a polynomial over a Dedekind ring, University of Bucharest, Romania (1994) (Ph. D. Thesis)

[111] Marian Vâjâitu The ideal generated by the values of a polynomial over a Dedekind ring, Rev. Roumaine Math. Pures Appl., Volume 42 (1997) no. 1-2, pp. 155-161 | MR | Zbl

[112] Marian Vâjâitu An inequality involving the degree of an algebraic set, Rev. Roumaine Math. Pures Appl., Volume 43 (1998) no. 3-4, pp. 451-455 | MR | Zbl

[113] Marian Vâjâitu; Alexandru Zaharescu A finiteness theorem for a class of exponential congruences, Proc. Amer. Math. Soc., Volume 127 (1999) no. 8, pp. 2225-2232 | DOI | MR | Zbl

[114] Robert J. Valenza Elasticity of factorization in number fields, J. Number Theory, Volume 36 (1990) no. 2, pp. 212-218 | DOI | MR | Zbl

[115] Vladislav V. Volkov; Fedor V. Petrov On the interpolation of integer-valued polynomials, J. Number Theory, Volume 133 (2013) no. 12, pp. 4224-4232 | DOI | MR | Zbl

[116] E. von Żyliński Zur Theorie der außerwesentlichen Diskriminantenteiler algebraischer Körper, Math. Ann., Volume 73 (1913) no. 2, pp. 273-274 | DOI | MR | Zbl

[117] Bolesław Wantuła Browkin’s problem for quadratic fields, Zeszyty Nauk. Politech. Ślask. Mat.-Fiz., Volume 24 (1974), pp. 173-178 | MR | Zbl

[118] Rolf Wasén On sequences of algebraic integers in pure extensions of prime degree, Colloq. Math., Volume 30 (1974), pp. 89-104 | DOI | MR | Zbl

[119] Nicholas J. Werner Integer-valued polynomials over quaternion rings, J. Algebra, Volume 324 (2010) no. 7, pp. 1754-1769 | DOI | MR | Zbl

[120] Nicholas J. Werner Integer-valued polynomials over matrix rings, Comm. Algebra, Volume 40 (2012) no. 12, pp. 4717-4726 | DOI | MR | Zbl

[121] Nicholas J. Werner On least common multiples of polynomials in /n[x], Comm. Algebra, Volume 40 (2012) no. 6, pp. 2066-2080 | DOI | MR | Zbl

[122] Nicholas J. Werner Polynomials that kill each element of a finite ring, J. Algebra Appl., Volume 13 (2014) no. 3, 1350111, 12 pages | DOI | MR | Zbl

[123] Nicholas J. Werner Integer-valued polynomials on algebras: a survey of recent results and open questions, Rings, polynomials, and modules, Springer, Cham, 2017, pp. 353-375 | DOI | MR | Zbl

[124] Melanie Wood P-orderings: a metric viewpoint and the non-existence of simultaneous orderings, J. Number Theory, Volume 99 (2003) no. 1, pp. 36-56 | DOI | MR | Zbl

[125] Hans Zantema Integer valued polynomials over a number field, Manuscripta Math., Volume 40 (1982) no. 2-3, pp. 155-203 | DOI | MR | Zbl

[126] Abdelkader Zekhnini Imaginary biquadratic Pólya fields of the form (d,-2), Gulf J. Math., Volume 4 (2016) no. 4, pp. 182-188 | MR | Zbl

Cited by Sources: