A posteriori error estimates for a fully discrete approximation of Sobolev equations
Confluentes Mathematici, Tome 11 (2019) no. 1, pp. 3-28.

The paper presents an a posteriori error estimator for a (piecewise linear) conforming finite element approximation of some (linear) Sobolev equations in d , d=2 or 3, using implicit Euler’s scheme. For this discretization, we derive a residual indicator, which uses a spatial residual indicator based on the jumps of conormal derivatives of the approximations and a time residual indicator based on the jump (in an appropriated norm) of the successive solutions at each time step. Lower and upper bounds are obtained with minimal assumptions on the meshes. Numerical experiments that confirm and illustrate the theoretical results are given.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/cml.53
Classification : 65M15,  65M50,  65M60
Mots clés : Sobolev equations, a posteriori error analysis
     author = {Serge Nicaise and Fatiha Bekkouche},
     title = {A posteriori error estimates for a fully discrete approximation of {Sobolev} equations},
     journal = {Confluentes Mathematici},
     pages = {3--28},
     publisher = {Institut Camille Jordan},
     volume = {11},
     number = {1},
     year = {2019},
     doi = {10.5802/cml.53},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.53/}
Nicaise, Serge; Bekkouche, Fatiha. A posteriori error estimates for a fully discrete approximation of Sobolev equations. Confluentes Mathematici, Tome 11 (2019) no. 1, pp. 3-28. doi : 10.5802/cml.53. https://cml.centre-mersenne.org/articles/10.5802/cml.53/

[1] D. N. Arnold, J. Douglas, Jr., and V. Thomée. Superconvergence of a finite element approximation to the solution of a Sobolev equation in a single space variable. Math. Comp., 36(153):53–63, 1981.

[2] G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik. Theory of fluid flow through natural rocks. Dordrecht: Kluwer, 1990.

[3] F. Bekkouche, W. Chikouche, and S. Nicaise. Fully discrete approximation of general nonlinear Sobolev equations. Afr. Mat., Sep 2018.

[4] A. Bergam, C. Bernardi, and Z. Mghazli. A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp., 74(251):1117–1138, 2005.

[5] C. Bernardi and B. Métivet. Indicateurs d’erreur pour l’équation de la chaleur. Revue Européenne des éléments finis, 9(4):425–438, 2000.

[6] C. Bernardi and R. Verfürth. A posteriori error analysis of the fully discretized time-dependent Stokes equations. M2AN Math. Model. Numer. Anal., 38(3):437–455, 2004.

[7] J. M. Cascón, L. Ferragut, and M. I. Asensio. Space-time adaptive algorithm for the mixed parabolic problem. Numer. Math., 103(3):367–392, 2006.

[8] P. J. Chen and M. E. Gurtin. On a theory of heat conduction involving two temperatures. Z. Angew. Math. Phys., 19:614–627, 1968.

[9] P. Ciarlet. The finite element method for elliptic problems. North Holland, 1996.

[10] P. Clément. Approximation by finite element functions using local regularization. Rev. Française Automat. Informat. Recherche Opérationnelle Sér., 9(R-2):77–84, 1975.

[11] B. D. Coleman and W. Noll. An approximation theorem for functionals, with applications in continuum mechanics. Arch. Rational Mech. Anal., 6:355–370 (1960), 1960.

[12] C. Cuesta, C. J. van Duijn, and J. Hulshof. Infiltration in porous media with dynamic capillary pressure: travelling waves. European J. Appl. Math., 11(4):381–397, 2000.

[13] R. E. Ewing. Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations. SIAM J. Numer. Anal., 15(6):1125–1150, 1978.

[14] S. M. Hassanizadeh and W. G. Gray. Thermodynamic basis of capillary pressure in porous media. Water Resour. Res., 29:858–879, 1993.

[15] P. Houston and E. Süli. Adaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems. Math. Comp., 70(233):77–106, 2001.

[16] C. Johnson, Y. Y. Nie, and V. Thomée. An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal., 27(2):277–291, 1990.

[17] T. Liu, Y.-p. Lin, M. Rao, and J. R. Cannon. Finite element methods for Sobolev equations. J. Comput. Math., 20(6):627–642, 2002.

[18] S. Nicaise and N. Soualem. A posteriori error estimates for a nonconforming finite element discretization of the heat equation. M2AN Math. Model. Numer. Anal., 39(2):319–348, 2005.

[19] M. R. Ohm and H. Y. Lee. L 2 -error analysis of fully discrete discontinuous Galerkin approximations for nonlinear Sobolev equations. Bull. Korean Math. Soc., 48(5):897–915, 2011.

[20] M. R. Ohm, H. Y. Lee, and J. Y. Shin. L 2 -error estimates of the extrapolated Crank-Nicolson discontinuous Galerkin approximations for nonlinear Sobolev equations. J. Inequal. Appl., pages Art. ID 895187, 17, 2010.

[21] M. Picasso. Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg., 167(3-4):223–237, 1998.

[22] M. Picasso. An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems. SIAM J. Sci. Comput., 24(4):1328–1355, 2003.

[23] R. E. Showalter. The Sobolev equation. II. Applicable Anal., 5(2):81–99, 1975.

[24] T. W. Ting. Certain non-steady flows of second-order fluids. Arch. Rational Mech. Anal., 14:1–26, 1963.

[25] T. W. Ting. A cooling process according to two-temperature theory of heat conduction. J. Math. Anal. Appl., 45:23–31, 1974.

[26] T. Tran and T.-B. Duong. A posteriori error estimates with the finite element method of lines for a Sobolev equation. Numer. Methods Partial Differential Equations, 21(3):521–535, 2005.

[27] R. Verfürth. A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Chichester; Stuttgart, 1996.

[28] R. Verfürth. Error estimates for some quasi-interpolation operators. M2AN Math. Model. Numer. Anal., 33(4):695–713, 1999.

[29] R. Verfürth. A posteriori error estimates for finite element discretization of the heat equation. Calcolo, 40:195–212, 2003.