Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions
Confluentes Mathematici, Volume 9 (2017) no. 1, pp. 65-93.

Given a smooth bounded planar domain Ø, we construct a compact set on the boundary such that its characteristic function is not the trace of a least gradient function. This generalizes the construction of Spradlin and Tamasan [3] when Ø is a disc.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/cml.36
Classification: 26B30,  35J56
Keywords: traces of functions of bounded variation, least gradient problem
Mickaël Dos Santos 1

1 Université Paris Est-Créteil, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France
@article{CML_2017__9_1_65_0,
     author = {Micka\"el Dos Santos},
     title = {Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions},
     journal = {Confluentes Mathematici},
     pages = {65--93},
     publisher = {Institut Camille Jordan},
     volume = {9},
     number = {1},
     year = {2017},
     doi = {10.5802/cml.36},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.36/}
}
TY  - JOUR
TI  - Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions
JO  - Confluentes Mathematici
PY  - 2017
DA  - 2017///
SP  - 65
EP  - 93
VL  - 9
IS  - 1
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.36/
UR  - https://doi.org/10.5802/cml.36
DO  - 10.5802/cml.36
LA  - en
ID  - CML_2017__9_1_65_0
ER  - 
%0 Journal Article
%T Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions
%J Confluentes Mathematici
%D 2017
%P 65-93
%V 9
%N 1
%I Institut Camille Jordan
%U https://doi.org/10.5802/cml.36
%R 10.5802/cml.36
%G en
%F CML_2017__9_1_65_0
Mickaël Dos Santos. Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions. Confluentes Mathematici, Volume 9 (2017) no. 1, pp. 65-93. doi : 10.5802/cml.36. https://cml.centre-mersenne.org/articles/10.5802/cml.36/

[1] G. Anzellotti; M. Giaquinta Funzioni BV e tracce, Rend. Sem. Mat. Univ. Padova, Volume 60 (1978), pp. 1-21

[2] E. Giusti Minimal surfaces and functions of bounded variation, Springer Science & Business Media, 1984 no. 80

[3] G. Spradlin; A. Tamasan Not All Traces on the Circle Come from Functions of Least Gradient in the Disk, Indiana Univ. Math. J., Volume 63 (2014) no. 3, pp. 1819-1837 | Article

[4] P. Sternberg; G. Williams; W. Ziemer Existence, uniqueness, and regularity for functions of least gradient., J. reine angew. Math., Volume 430 (1992), pp. 35-60

Cited by Sources: