Given a smooth bounded planar domain , we construct a compact set on the boundary such that its characteristic function is not the trace of a least gradient function. This generalizes the construction of Spradlin and Tamasan [3] when is a disc.
Revised:
Accepted:
Published online:
Mots-clés : traces of functions of bounded variation, least gradient problem
Mickaël Dos Santos 1
@article{CML_2017__9_1_65_0, author = {Micka\"el Dos Santos}, title = {Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions}, journal = {Confluentes Mathematici}, pages = {65--93}, publisher = {Institut Camille Jordan}, volume = {9}, number = {1}, year = {2017}, doi = {10.5802/cml.36}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.36/} }
TY - JOUR AU - Mickaël Dos Santos TI - Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions JO - Confluentes Mathematici PY - 2017 SP - 65 EP - 93 VL - 9 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.36/ DO - 10.5802/cml.36 LA - en ID - CML_2017__9_1_65_0 ER -
%0 Journal Article %A Mickaël Dos Santos %T Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions %J Confluentes Mathematici %D 2017 %P 65-93 %V 9 %N 1 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.36/ %R 10.5802/cml.36 %G en %F CML_2017__9_1_65_0
Mickaël Dos Santos. Characteristic functions on the boundary of a planar domain need not be traces of least gradient functions. Confluentes Mathematici, Volume 9 (2017) no. 1, pp. 65-93. doi : 10.5802/cml.36. https://cml.centre-mersenne.org/articles/10.5802/cml.36/
[1] Funzioni e tracce, Rend. Sem. Mat. Univ. Padova, Volume 60 (1978), pp. 1-21
[2] Minimal surfaces and functions of bounded variation, Springer Science & Business Media, 1984 no. 80
[3] Not All Traces on the Circle Come from Functions of Least Gradient in the Disk, Indiana Univ. Math. J., Volume 63 (2014) no. 3, pp. 1819-1837 | DOI
[4] Existence, uniqueness, and regularity for functions of least gradient., J. reine angew. Math., Volume 430 (1992), pp. 35-60
Cited by Sources: