The Drinfeld-Grinberg-Kazhdan Theorem for formal schemes and singularity theory
Confluentes Mathematici, Volume 9 (2017) no. 1, pp. 29-64.

Let k be a field. In this article, we provide an extended version of the Drinfeld-Grinberg-Kazhdan Theorem in the context of formal geometry. We prove that, for every formal scheme V topologically of finite type over Spf(k[[T]]), for every non-singular arc γ (V)(k), there exists an affine noetherian adic formal k-scheme 𝒮 and an isomorphism of formal k-schemes

(V)γ𝒮×kSpf(k[[(Ti)iN]]).

We emphasize the fact that the proof is constructive and, when V is the completion of an affine algebraic k-variety, effectively implementable. Besides, we derive some properties of such an isomorphism in the direction of singularity theory.

Received:
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/cml.35
Classification: 14E18, 14B05
Keywords: Arc scheme, formal neighborhood

David Bourqui 1; Julien Sebag 1

1 Institut de recherche mathématique de Rennes, CNRS UMR 6625, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CML_2017__9_1_29_0,
     author = {David Bourqui and Julien Sebag},
     title = {The {Drinfeld-Grinberg-Kazhdan} {Theorem} for formal schemes and singularity theory},
     journal = {Confluentes Mathematici},
     pages = {29--64},
     publisher = {Institut Camille Jordan},
     volume = {9},
     number = {1},
     year = {2017},
     doi = {10.5802/cml.35},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.35/}
}
TY  - JOUR
AU  - David Bourqui
AU  - Julien Sebag
TI  - The Drinfeld-Grinberg-Kazhdan Theorem for formal schemes and singularity theory
JO  - Confluentes Mathematici
PY  - 2017
SP  - 29
EP  - 64
VL  - 9
IS  - 1
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.35/
DO  - 10.5802/cml.35
LA  - en
ID  - CML_2017__9_1_29_0
ER  - 
%0 Journal Article
%A David Bourqui
%A Julien Sebag
%T The Drinfeld-Grinberg-Kazhdan Theorem for formal schemes and singularity theory
%J Confluentes Mathematici
%D 2017
%P 29-64
%V 9
%N 1
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.35/
%R 10.5802/cml.35
%G en
%F CML_2017__9_1_29_0
David Bourqui; Julien Sebag. The Drinfeld-Grinberg-Kazhdan Theorem for formal schemes and singularity theory. Confluentes Mathematici, Volume 9 (2017) no. 1, pp. 29-64. doi : 10.5802/cml.35. https://cml.centre-mersenne.org/articles/10.5802/cml.35/

[1] Nicolas Bourbaki Éléments de mathématique. Fascicule XXVIII. Algèbre commutative. Chapitre 3: Graduations, filtrations et topologies. Chapitre 4: Idéaux premiers associés et décomposition primaire, Actualités Scientifiques et Industrielles, No. 1293, Hermann, Paris, 1961, 183 pages

[2] David Bourqui; Julien Sebag The Drinfeld-Grinberg-Kazhdan theorem is false for singular arcs (To appear in J. Inst. Math. Jussieu)

[3] David Bourqui; Julien Sebag On the minimal formal models of curve singularities (To appear in Internat. J. Math.)

[4] David Bourqui; Julien Sebag A SAGE implementation of Drinfeld’s arguments, and some variations (available at https://perso.univ-rennes1.fr/david.bourqui/sageDGK.pdf)

[5] David Bourqui; Julien Sebag Smooth arcs on algebraic varieties (To appear in J. Singul.)

[6] Alexis Bouthier; David Kazhdan Faisceaux pervers sur les espaces d’arcs I: Le cas d’égales caractéristiques (preprint 2015)

[7] Alexis Bouthier; Bau Chau Ngô; Yiannis Sakellaridis On the formal arc space of a reductive monoid, Amer. J. Math., Volume 138 (2016) no. 1, pp. 81-108 | DOI

[8] Clemens Bruschek; Herwig Hauser Arcs, cords, and felts—six instances of the linearization principle, Amer. J. Math., Volume 132 (2010) no. 4, pp. 941-986 | DOI

[9] Aise Johan De Jong The stacks project (http://stacks.math.columbia.edu/tag/05JA)

[10] Jan Denef; François Loeser Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999) no. 1, pp. 201-232 | DOI

[11] Vladimir Drinfeld On the Grinberg-Kazhdan formal arc theorem (preprint)

[12] Lawrence Ein; Mircea Mustaţă Generically finite morphisms and formal neighborhoods of arcs, Geom. Dedicata, Volume 139 (2009), pp. 331-335 | DOI

[13] Lawrence Ein; Mircea Mustaţă Jet schemes and singularities, Algebraic geometry—Seattle 2005. Part 2 (Proc. Sympos. Pure Math.), Volume 80, Amer. Math. Soc., Providence, RI, 2009, pp. 505-546 | DOI | MR

[14] Renée Elkik Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm. Sup. (4), Volume 6 (1973), p. 553-603 (1974) | DOI

[15] Ofer Gabber (private communication)

[16] Marvin J. Greenberg Rational points in Henselian discrete valuation rings, Inst. Hautes Études Sci. Publ. Math., Volume 31 (1966), pp. 59-64 | DOI

[17] Mikhail Grinberg; David Kazhdan Versal deformations of formal arcs, Geom. Funct. Anal., Volume 10 (2000) no. 3, pp. 543-555 | DOI

[18] Alexandre Grothendieck Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math., Volume 4 (1960), 228 pages | DOI | MR

[19] Alexandre Grothendieck Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math., Volume 32 (1967), 361 pages

[20] Mercedes Haiech On noncomplete completions (2016) (Master thesis)

[21] Eloise Hamann On power-invariance, Pacific J. Math., Volume 61 (1975) no. 1, pp. 153-159 | DOI

[22] E. R. Kolchin Differential algebra and algebraic groups, Academic Press, New York-London, 1973, xviii+446 pages (Pure and Applied Mathematics, Vol. 54)

[23] Kodjo Kpognon; Julien Sebag Nilpotence in arc schemes of plane curves, Comm. Alg., Volume 45 (2017) no. 5, pp. 2195-2221 | DOI

[24] Serge Lang Algebra, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002, xvi+914 pages | DOI | MR

[25] Hideyuki Matsumura Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989, xiv+320 pages (Translated from the Japanese by M. Reid)

[26] Michel Raynaud Anneaux locaux henséliens, Lecture Notes in Mathematics, Vol. 169, Springer-Verlag, Berlin-New York, 1970, v+129 pages

[27] Ana J. Reguera Towards the singular locus of the space of arcs, Amer. J. Math., Volume 131 (2009) no. 2, pp. 313-350 | DOI

[28] Nilakantan Sankaran A theorem on Henselian rings, Canad. Math. Bull., Volume 11 (1968), pp. 275-277 | DOI

[29] Julien Sebag Intégration motivique sur les schémas formels, Bull. Soc. Math. France, Volume 132 (2004) no. 1, pp. 1-54 | DOI

[30] Julien Sebag Arcs schemes, derivations and Lipman’s theorem, J. Algebra, Volume 347 (2011), pp. 173-183 | DOI

[31] Julien Sebag Primitive arcs on curves, Bull. Belg. Math. Soc. - Simon Stevin, Volume 23 (2016) no. 4, pp. 481-486

[32] Julien Sebag A remark on Berger’s conjecture, Kolchin’s theorem and arc schemes, Arch. Math., Volume 108 (2017) no. 2, p. 145-–150 | DOI

[33] Richard G. Swan Néron-Popescu desingularization, Algebra and geometry (Taipei, 1995) (Lect. Algebra Geom.), Volume 2, Int. Press, Cambridge, MA, 1998, pp. 135-192 | MR

[34] Amnon Yekutieli On flatness and completion for infinitely generated modules over Noetherian rings, Comm. Algebra, Volume 39 (2011) no. 11, pp. 4221-4245 | DOI

Cited by Sources: