Let be a field. In this article, we provide an extended version of the Drinfeld-Grinberg-Kazhdan Theorem in the context of formal geometry. We prove that, for every formal scheme topologically of finite type over , for every non-singular arc , there exists an affine noetherian adic formal -scheme and an isomorphism of formal -schemes
We emphasize the fact that the proof is constructive and, when is the completion of an affine algebraic -variety, effectively implementable. Besides, we derive some properties of such an isomorphism in the direction of singularity theory.
Accepted:
Revised after acceptance:
Published online:
Keywords: Arc scheme, formal neighborhood
David Bourqui 1; Julien Sebag 1
@article{CML_2017__9_1_29_0, author = {David Bourqui and Julien Sebag}, title = {The {Drinfeld-Grinberg-Kazhdan} {Theorem} for formal schemes and singularity theory}, journal = {Confluentes Mathematici}, pages = {29--64}, publisher = {Institut Camille Jordan}, volume = {9}, number = {1}, year = {2017}, doi = {10.5802/cml.35}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.35/} }
TY - JOUR AU - David Bourqui AU - Julien Sebag TI - The Drinfeld-Grinberg-Kazhdan Theorem for formal schemes and singularity theory JO - Confluentes Mathematici PY - 2017 SP - 29 EP - 64 VL - 9 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.35/ DO - 10.5802/cml.35 LA - en ID - CML_2017__9_1_29_0 ER -
%0 Journal Article %A David Bourqui %A Julien Sebag %T The Drinfeld-Grinberg-Kazhdan Theorem for formal schemes and singularity theory %J Confluentes Mathematici %D 2017 %P 29-64 %V 9 %N 1 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.35/ %R 10.5802/cml.35 %G en %F CML_2017__9_1_29_0
David Bourqui; Julien Sebag. The Drinfeld-Grinberg-Kazhdan Theorem for formal schemes and singularity theory. Confluentes Mathematici, Volume 9 (2017) no. 1, pp. 29-64. doi : 10.5802/cml.35. https://cml.centre-mersenne.org/articles/10.5802/cml.35/
[1] Éléments de mathématique. Fascicule XXVIII. Algèbre commutative. Chapitre 3: Graduations, filtrations et topologies. Chapitre 4: Idéaux premiers associés et décomposition primaire, Actualités Scientifiques et Industrielles, No. 1293, Hermann, Paris, 1961, 183 pages
[2] The Drinfeld-Grinberg-Kazhdan theorem is false for singular arcs (To appear in J. Inst. Math. Jussieu)
[3] On the minimal formal models of curve singularities (To appear in Internat. J. Math.)
[4] A SAGE implementation of Drinfeld’s arguments, and some variations (available at https://perso.univ-rennes1.fr/david.bourqui/sageDGK.pdf)
[5] Smooth arcs on algebraic varieties (To appear in J. Singul.)
[6] Faisceaux pervers sur les espaces d’arcs I: Le cas d’égales caractéristiques (preprint 2015)
[7] On the formal arc space of a reductive monoid, Amer. J. Math., Volume 138 (2016) no. 1, pp. 81-108 | DOI
[8] Arcs, cords, and felts—six instances of the linearization principle, Amer. J. Math., Volume 132 (2010) no. 4, pp. 941-986 | DOI
[9] The stacks project (http://stacks.math.columbia.edu/tag/05JA)
[10] Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Volume 135 (1999) no. 1, pp. 201-232 | DOI
[11] On the Grinberg-Kazhdan formal arc theorem (preprint)
[12] Generically finite morphisms and formal neighborhoods of arcs, Geom. Dedicata, Volume 139 (2009), pp. 331-335 | DOI
[13] Jet schemes and singularities, Algebraic geometry—Seattle 2005. Part 2 (Proc. Sympos. Pure Math.), Volume 80, Amer. Math. Soc., Providence, RI, 2009, pp. 505-546 | DOI | MR
[14] Solutions d’équations à coefficients dans un anneau hensélien, Ann. Sci. École Norm. Sup. (4), Volume 6 (1973), p. 553-603 (1974) | DOI
[15]
(private communication)[16] Rational points in Henselian discrete valuation rings, Inst. Hautes Études Sci. Publ. Math., Volume 31 (1966), pp. 59-64 | DOI
[17] Versal deformations of formal arcs, Geom. Funct. Anal., Volume 10 (2000) no. 3, pp. 543-555 | DOI
[18] Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math., Volume 4 (1960), 228 pages | DOI | MR
[19] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math., Volume 32 (1967), 361 pages
[20] On noncomplete completions (2016) (Master thesis)
[21] On power-invariance, Pacific J. Math., Volume 61 (1975) no. 1, pp. 153-159 | DOI
[22] Differential algebra and algebraic groups, Academic Press, New York-London, 1973, xviii+446 pages (Pure and Applied Mathematics, Vol. 54)
[23] Nilpotence in arc schemes of plane curves, Comm. Alg., Volume 45 (2017) no. 5, pp. 2195-2221 | DOI
[24] Algebra, Graduate Texts in Mathematics, 211, Springer-Verlag, New York, 2002, xvi+914 pages | DOI | MR
[25] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989, xiv+320 pages (Translated from the Japanese by M. Reid)
[26] Anneaux locaux henséliens, Lecture Notes in Mathematics, Vol. 169, Springer-Verlag, Berlin-New York, 1970, v+129 pages
[27] Towards the singular locus of the space of arcs, Amer. J. Math., Volume 131 (2009) no. 2, pp. 313-350 | DOI
[28] A theorem on Henselian rings, Canad. Math. Bull., Volume 11 (1968), pp. 275-277 | DOI
[29] Intégration motivique sur les schémas formels, Bull. Soc. Math. France, Volume 132 (2004) no. 1, pp. 1-54 | DOI
[30] Arcs schemes, derivations and Lipman’s theorem, J. Algebra, Volume 347 (2011), pp. 173-183 | DOI
[31] Primitive arcs on curves, Bull. Belg. Math. Soc. - Simon Stevin, Volume 23 (2016) no. 4, pp. 481-486
[32] A remark on Berger’s conjecture, Kolchin’s theorem and arc schemes, Arch. Math., Volume 108 (2017) no. 2, p. 145-â150 | DOI
[33] Néron-Popescu desingularization, Algebra and geometry (Taipei, 1995) (Lect. Algebra Geom.), Volume 2, Int. Press, Cambridge, MA, 1998, pp. 135-192 | MR
[34] On flatness and completion for infinitely generated modules over Noetherian rings, Comm. Algebra, Volume 39 (2011) no. 11, pp. 4221-4245 | DOI
Cited by Sources: