The aim of this article is to give a self-contained account of the algebra and model theory of Cohen rings, a natural generalization of Witt rings. Witt rings are only valuation rings in case the residue field is perfect, and Cohen rings arise as the Witt ring analogon over imperfect residue fields. Just as one studies truncated Witt rings to understand Witt rings, we study Cohen rings of positive characteristic as well as of characteristic zero. Our main results are a relative completeness and a relative model completeness result for Cohen rings, which imply the corresponding Ax-Kochen/Ershov type results for unramified henselian valued fields also in case the residue field is imperfect.
Révisé le :
Accepté le :
Publié le :
Mots clés : model theory, henselian valued fields, Cohen rings, Ax-Kochen-Ershov
Sylvy Anscombe 1 ; Franziska Jahnke 2
@article{CML_2022__14_2_1_0, author = {Sylvy Anscombe and Franziska Jahnke}, title = {The model theory of {Cohen} rings}, journal = {Confluentes Mathematici}, pages = {1--28}, publisher = {Institut Camille Jordan}, volume = {14}, number = {2}, year = {2022}, doi = {10.5802/cml.84}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.84/} }
TY - JOUR AU - Sylvy Anscombe AU - Franziska Jahnke TI - The model theory of Cohen rings JO - Confluentes Mathematici PY - 2022 SP - 1 EP - 28 VL - 14 IS - 2 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.84/ DO - 10.5802/cml.84 LA - en ID - CML_2022__14_2_1_0 ER -
Sylvy Anscombe; Franziska Jahnke. The model theory of Cohen rings. Confluentes Mathematici, Tome 14 (2022) no. 2, pp. 1-28. doi : 10.5802/cml.84. https://cml.centre-mersenne.org/articles/10.5802/cml.84/
[1] Sylvy Anscombe and Franziska Jahnke. Characterizing NIP henselian fields. arXiv: 1911.00309 [math.LO].
[2] Luc Bélair. Types dans les corps valués munis d’applications coefficients. Illinois J. Math., 43(2):410–425, 1999. | DOI | Zbl
[3] Zoé Chatzidakis and Ehud Hrushovski. Model theory of difference fields. Trans. Amer. Math. Soc., 351(8):2997–3071, 1999. | DOI | MR | Zbl
[4] I. S. Cohen. On the structure and ideal theory of complete local rings. Trans. Amer. Math. Soc., 59:54–106, 1946. | DOI | MR | Zbl
[5] H. Hasse and F. K. Schmidt. Die Struktur diskret bewerteter Körper. J. reine angew. Math., 170:4–63, 1934. | DOI | Zbl
[6] Jizhan Hong. Definable Non-divisible Henselian Valuations. Bull. Lond. Math. Soc., 46(1):14–18, 2014. | DOI | MR | Zbl
[7] Franziska Jahnke and Pierre Simon. NIP henselian valued fields. Arch. Math. Logic, 59(1):167–178, 2020. | DOI | MR | Zbl
[8] Irving Kaplansky. Maximal fields with valuations I. Duke Math. J., 9:303–321, 1942. | DOI | MR | Zbl
[9] Wolfgang Krull. Beiträge zur Arithmetik kommutativer Integritätsberiche. III Zum Dimensionsbegriff der Idealtheorie. Math. Zeit., 42:745-766, 1937. | DOI | Zbl
[10] Wolfgang Krull. Dimensionstheorie in Stellenringen. J. reine angew. Math., 179:204–226, 1938. | DOI | Zbl
[11] Franz-Viktor Kuhlmann. Valuation theory, book in progress. Available online: http://math.usask.ca/~fvk/Fvkbook.htm, 2011.
[12] Franz-Viktor Kuhlmann. The algebra and model theory of tame valued fields. J. Reine Angew. Math., 719:1–43, 2016. | DOI | MR | Zbl
[13] Franz-Viktor Kuhlmann. Elimination of ramification II: Henselian rationality. Isr. J. Math., 234:927–958, 2019. | DOI | MR | Zbl
[14] Saunders Mac Lane. Modular fields. I. Separating transcendence bases. Duke Math. J., 5:372–393, 1939. | DOI | MR | Zbl
[15] Saunders Mac Lane. Steinitz field towers for modular fields. Trans. Amer. Math. Soc., 46:23–45, 1939. | DOI | MR | Zbl
[16] Saunders Mac Lane. Subfields and Automorphisms Groups of -Adic Fields. Ann. Math., 40(2):423–442, 1939. | Zbl
[17] Anand Pillay. Stable embeddedness and NIP. J. Symb. Logic, 76(2):665-672, 2011. | DOI | MR | Zbl
[18] Peter Roquette. History of Valuation Theory, Part I. Available online: https://www.mathi.uni-heidelberg.de/~roquette/hist_val.pdf, 2003.
[19] Colette Schoeller Groupes affines, commutatifs, unipotents sur un corps non parfait. Bull. de la S. M. F., 100:241–300, 1972. | DOI | Zbl
[20] Jean-Pierre Serre. Local Fields (English translation of Corps locaux). Springer, 1979.
[21] S. Shelah. Every two elementarily equivalent models have isomorphic ultrapowers. Israel J. Math., 10:224–233, 1971. | DOI | MR | Zbl
[22] Oswald Teichmüller. -Algebren. Deutsche Math., 1:362–388, 1936.
[23] Oswald Teichmüller. Über die Struktur diskret bewerteter perfekter Körper. In: Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalishe Klasse: Fachgruppe 1, Nachrichten aus der Mathematik, 1(10):152–161, 1936.
[24] Oswald Teichmüller. Diskret bewerteter perfekte Körper mit unvollkommenem Restklassenkörper. J. reine angew. Math., 176:141–152, 1937. | DOI | Zbl
[25] Lou van den Dries. Lectures on the Model Theory of Valued Fields. In Lou van den Dries, Jochen Koenigsmann, H. Dugald Macpherson, Anand Pillay, Carlo Toffalori, Alex J. Wilkie, Model Theory in Algebra, Analysis and Arithmetic, 55–157. Lecture Notes in Mathematics, vol. 2111. Springer, Berlin, Heidelberg, 2014. | DOI
[26] S. Warner. Topological Rings. North-Holland Mathematics Studies, Elsevier, 1993. | DOI
[27] E. Witt. Zyklische Körper und Algebren der Charakteristik vom Grad . J. reine angew. Math., 176:126–140, 1937. | DOI | Zbl
Cité par Sources :