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THE MODEL THEORY OF COHEN RINGS

SYLVY ANSCOMBE AND FRANZISKA JAHNKE

Abstract. The aim of this article is to give a self-contained account of the algebra and
model theory of Cohen rings, a natural generalization of Witt rings. Witt rings are only
valuation rings in case the residue field is perfect, and Cohen rings arise as the Witt ring
analogon over imperfect residue fields. Just as one studies truncated Witt rings to understand
Witt rings, we study Cohen rings of positive characteristic as well as of characteristic zero.
Our main results are a relative completeness and a relative model completeness result for
Cohen rings, which imply the corresponding Ax-Kochen/Ershov type results for unramified
henselian valued fields also in case the residue field is imperfect.

1. Introduction

The aim of this paper is to give an introduction to the model theory of complete
Noetherian local rings A which have maximal ideal pA, where p is a prime number.
From an algebraic point of view, the theory of such rings is classical. Under the
additional hypothesis of regularity, they are valuation rings, and their study goes
back to work of Krull ([9]) and many others. Structure theorems were obtained by
Hasse and Schmidt ([5]), although there were deficiencies in the case that A/pA is
not perfect. Further structural results were obtained by Witt ([27]) and Teichmüller
([23]). In particular Teichmüller gave a brief but precise account of the structure
of such rings, even in the case that A/pA is imperfect. This was followed by Mac
Lane ([16]), who improved upon Teichmüller’s theory and proved relative structure
theorems. Mac Lane built his work upon his study of Teichmüller’s notion of p-
independence in [22]. For further historical information, especially on this early
period, the reader is encouraged to consult Roquette’s article [18] on the history of
valuation theory.

Turning away from the hypothesis of regularity, Cohen ([4]) gave an account of
the structure of such rings. In fact his context was even more general: he did not
assume Noetherianity.

Despite all of this work, more modern treatments (e.g. Serre, [20]) of this subject
are often restricted to the case that A/pA is perfect. Consequently, the literature
on the model theory of complete Noetherian local rings is sparse. For example, [25]
also assumes that A/pA is perfect.

We became interested in the model theory of complete Noetherian local rings
when we started to construct examples of NIP henselian valued fields with imperfect
residue field in order to obtain an understanding of NIP henselian valued fields
([1]). After getting acquainted with the algebra of these rings as scattered in the
literature detailed above, we realized that with a bit of tweaking, the proof ideas of
these (classical) results can be used to gain an understanding of the model theory
of such rings. To start with, this requires a careful recapitulation of the known
algebraic (or structural) theory of such rings, bringing older results together in one
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framework. This overview is given in Part I of the article. In this first part, many
of the proof ideas are inspired by the work of others (and we point to the original
sources), but we take care to prove everything which cannot be cited directly from
elsewhere.

The underlying definition of a Cohen ring is the following:

Definition 1.1 (Cf. Definitions 2.3 and 2.7). — A Cohen ring is a complete
Noetherian local ring A with maximal ideal pA, where p is the residue characteristic
of A.

A Cohen ring may either have characteristic 0 (in which case we call it strict) or
pn, where p is the characteristic of the residue field A/pA. In the second section,
we introduce Cohen rings and recall that, for a given field k of positive charac-
teristic, Cohen rings of every possible characteristic exist, which have residue field
k. In the third section, we discuss and develop the machinery of multiplicative
representatives, namely good sections of the residue map from the perfect core of
the residue field into the Cohen ring A (Definition 3.1). We also comment on the
extent to which these sections are unique, see Theorem 3.3, and how one can use
them to generate Cohen rings (Proposition 3.6). In the fourth section, we prove
that Teichmüller’s embedding technique works in this context: we embed a Cohen
ring with residue field k, with a choice of representatives, into the corresponding
Cohen ring over the perfect hull of k (see Theorem 4.1). Building on this and using
ideas from Cohen, we show that any two Cohen rings of the same characteristic and
over the same residue field, both equipped with representatives, are isomorphic. In
fact there is a unique isomorphism which respects the choices of representatives and
is the identity on the residue field (Cohen Structure Theorem, 6.5). In the final
section of the first part of the paper, we compare Cohen rings to Witt rings.

In the second part we begin a model-theoretic study, including describing the
complete theories of Cohen ring of a fixed characteristic, over a given residue field.
We work in the language Lvf = Lring ∪ {O} of valued fields. We then show rela-
tive completeness, using a classical proof strategy together with the Cohen Struc-
ture Theorem from section 6. In particular, this result gives the following Ax-
Kochen/Ershov principle:

Theorem 1.2 (Cf. Corollary 8.5). — Let (K, v) and (L,w) be two unramified
henselian valued fields. Then

Kv ≡ Lw︸ ︷︷ ︸
in Lring

and vK ≡ wL︸ ︷︷ ︸
in Loag

⇐⇒ (K, v) ≡ (L,w)︸ ︷︷ ︸
in Lvf

.

Note that this was already claimed by Bélair in [2, Corollaire 5.2(1)]. However,
since his proof crucially relies on Witt rings, it only works for perfect residue fields.

Moreover, we prove the following relative model-completeness result, which again
essentially builds on the Cohen Structure Theorem.

Theorem 1.3 (Cf. Corollary 9.4). — Let (K, v) ⊆ (L,w) be two unramified
henselian valued fields. Then, we have

Kv ⪯ Lw︸ ︷︷ ︸
in Lring

and vK ⪯ wL︸ ︷︷ ︸
in Loag

⇐⇒ (K, v) ⪯ (L,w)︸ ︷︷ ︸
in Lvf

.



THE MODEL THEORY OF COHEN RINGS 3

In the penultimate section, we prove an embedding lemma (Proposition 10.1)
similar to one proved by Kuhlmann for tame fields in [12]. This is the most delicate
proof in the model-theoretic part of the paper. We then apply the embedding
lemma to show relative existential closedness of unramified henselian valued fields
assuming that the residue fields have a fixed finite degree of imperfection (Theorem
10.2).

Finally, applying the embedding lemma once again, we argue that in any unram-
ified henselian valued field, there is no new structure induced on the residue field
and value group:

Theorem 1.4 (Cf. Theorem 11.3). — Let (K, v) be an unramfied henselian
valued field. Then the value group vK and the residue field Kv are both stably
embedded, as a pure ordered abelian group and as a pure field, respectively.

We conclude by giving an example of a finitely ramified henselian valued field in
which the residue field is no longer stably embedded (Example 11.5).

Part 1. The structure of Cohen rings

2. Pre-Cohen rings and Cohen rings

Throughout this paper, A,B,C will denote rings, which will always have a mul-
tiplicative identity 1 and be commutative; and k, l will be fields of characteristic p,
which is a fixed prime number.

A ring A is local if it has a unique maximal ideal, which we will usually denote
by m. A local ring is equipped with the local topology1, which is the ring topology
defined by declaring the descending sequence of ideals m ⊇ m2 ⊇ ... to be a base of
neighbourhoods of 0. The residue field of a local ring A, which we usually denote
by k, is the quotient ring A/m, and the natural quotient map

res : A −→ k

is called the residue map. The residue characteristic of A is by definition the
characteristic of k.

For the sake of clarity, since maps between residue fields of local rings are of
central importance in this paper, it will be suggestive to work with pairs (A, k)
consisting of a local ring A together with its residue field k. Of course, such a
pair is already determined by the local ring A, and this notation fails to explicitly
mention the maximal ideal or the residue map. Without risk of confusion, we will
also refer to such pairs as local rings.

Lemma 2.1 (Krull, [10, Theorem 2]). — Let A be a Noetherian local ring. Then⋂
n∈N mn = {0}. In other words, A is Hausdorff with respect to the local topology.

Remark 2.2 (Other terminology). — Before we give our main definitions, namely
Definitions 2.3 and 2.7, we note that many closely related ideas have been named
in the literature, both in original papers and textbooks. Mac Lane, in [16], works
with ‘p-adic fields’ and ‘p-adic fields’; whereas Cohen, in [4], prefers to work with
‘local rings’ (which, for Cohen, are necessarily Noetherian), ‘generalized local rings’,
and ‘v-rings’. Serre, in [20, Chapter II, §5], defines a ‘p-ring’ to be a ring A which

1The local topology is also known as the m-adic topology.
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is Hausdorff and complete in the topology defined by a decreasing sequence a1 ⊃
a2 ⊃ ... of ideals, such that aman ⊆ am+n, and for which A/a1 is a perfect ring
of characteristic p. More recently, van den Dries, in [25, p. 132], defines a ‘local
p-ring’ to be a complete local ring A with maximal ideal pA and perfect residue
field A/pA.

To minimise the risk of confusion with existing terminology, we will not work
with v-rings, p-adic fields, p-adic fields, p-rings, or local p-rings. Instead, since
Warner’s point of view, in [26, Chapter IX], is closer to our own, it is his definition
of ‘Cohen ring’ that we adopt. We hope the reader will forgive us for this, but we
feel that none of the other notions (several of which are arguably more standard in
the literature) exactly captures the right context for this paper.

Definition 2.3. — A pre-Cohen ring is a local ring (A, k) such that A is
Noetherian and the maximal ideal m is pA.

In particular, pre-Cohen rings are of residue characteristic p. Turning to the
question of the characteristic of A itself, we note that a pre-Cohen ring need not
even be an integral domain. However, a pre-Cohen ring is either of characteristic 0
or of characteristic pm, for some m ∈ N>0.

Lemma 2.4. — For a pre-Cohen ring (A, k), the following are equivalent:
(i) A is of characteristic zero,

(ii) A is an integral domain,
(iii) A is a valuation ring.

In this case, the corresponding valuation vA on the quotient field of A is of mixed
characteristic (0, p), has value group isomorphic to Z, with vA(p) minimum positive,
and has residue field k.

Proof. — This is a special case of [26, 21.4 Theorem]. □

Definition 2.5. — If any (equivalently, all) of the conditions of Lemma 2.4 are
satisfied, then we say that (A, k) is strict.

The word ‘strict’ is borrowed from Serre, [20, II,§5].

Remark 2.6. — In [4], Cohen writes in terms of regular Noetherian local rings.
A local ring is regular if its Krull dimension is equal to the number of generators of
its unique maximal ideal. In the case of a pre-Cohen ring (A, k), the maximal ideal
is by definition generated by one element, namely p. Therefore, (A, k) is regular
if and only if its Krull dimension is 1, which in turn holds if and only if (A, k) is
strict.

A morphism of pre-Cohen rings, which we write as φ : (A1, k1) −→ (A2, k2), is
a pair φ = (φA, φk) of ring homomorphisms φA : A1 −→ A2 and φk : k1 −→ k2,
such that

(i) m1 = φ−1
A (m2), i.e. φA is a morphism of local rings, and

(ii) φk ◦ res = res ◦ φA.
This is nothing more than a way of speaking about morphisms of local rings as pairs
of maps, to match the pairs (A, k). Every morphism φA of local rings induces a
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ring homomorphism φk : k1 −→ k2 such that (φA, φk) is a morphism of pre-Cohen
rings. From now on, by ‘morphism’ we mean a morphism of pre-Cohen rings. We
will often (but not always) be concerned with morphisms φ = (φA, φk) such that
k2/φk(k1) is separable. By an embedding, we mean a morphism φ = (φA, φk)
such that φA is injective. In the obvious way, we write (A1, k1) ⊆ (A2, k2) if A1 is
a subring of A2, k1 is a subfield of k2, and the inclusion maps form an embedding
(A1, k1) −→ (A2, k2).

Definition 2.7 (Cf. [26, 21.3 Definition]). — A pre-Cohen ring (A, k) is a
Cohen ring if it is also complete, i.e. complete with respect to the local topology.

Example 2.8. — (Zp,Fp) is a strict Cohen ring, and (Zp/p
mZp,Fp) is a non-strict

Cohen ring of characteristic pm for each integer m > 0.
Lemma 2.9. — Every pre-Cohen ring of positive characteristic is already a Co-

hen ring.
Proof. — In a non-strict pre-Cohen ring the topology is discrete. Thus it is

complete. □

Note that Cohen rings exist for any residue field and any characteristic. This
foundational existence result goes back to the work of Hasse and Schmidt.

Theorem 2.10 (Existence Theorem, [5, Theorem 20, p63]). — Let k be a field
of characteristic p. There exists a strict Cohen ring (A, k). Moreover, for each
m ∈ N>0, there exists a Cohen ring (Am, k) of characteristic pm.

Remark 2.11 (Inverse systems). — Let (A, k) be a non-strict Cohen ring of char-
acteristic pm, and let n ∈ N>0 such that n ⩽ m. The image of A under the
quotient map resm,n : A −→ A/mn is a non-strict Cohen ring of characteristic pn,
again with residue field k. Similarly, if (A, k) is a strict Cohen ring, and n ∈ N>0,
the image of A under the quotient map rn : A −→ A/mn is a non-strict Cohen ring
of characteristic pn, and as before with residue field k. In both cases, the residue
map of the quotient is induced by the residue map of A. These quotient maps are
compatible in the sense that, for n1 ⩽ n2 ⩽ m, we have rn1 = resn2,n1 ◦ rn2 and
resm,n1 = resn2,n1 ◦ resm,n2 . In this way, given a strict Cohen ring (A, k), we ob-
tain an inverse system of non-strict Cohen rings (Am, k)m>0 and maps (resm,n)n⩽m.
Conversely, beginning with an inverse system of non-strict Cohen rings (Am, k)m>0,
where each Am has characteristic pm, and quotient maps (resm,n)n⩽m, the inverse
limit is a strict Cohen ring (A, k), with quotient maps (rm)m>0. Clearly, these
constructions are mutually inverse.

Furthermore, if φ : (A, k) −→ (B, l) is an embedding of Cohen rings that are
both of characteristic pm (resp., both strict), then φ induces embeddings φn :
(A/mn, k) −→ (B/mn, l), for all n ⩽ m (resp., for all n > 0). On the other hand, if
we begin with two inverse systems (An, k)n>0 and (Bn, l)n>0, such that char(An) =
char(Bn) = pn, and a compatible family of embeddings φn : (An, k) −→ (Bn, l), for
n > 0, there is a unique compatible embedding φ : (A, k) −→ (B, l), where (A, k)
and (B, l) are the corresponding inverse limits.

3. Representatives

3.1. Teichmüller’s multiplicative representatives. The notion of ‘representa-
tives’ plays a key role in this subject.



6 S. Anscombe & F. Jahnke

Definition 3.1 (Cf. [23, §4.]). — Let (A, k) be a pre-Cohen ring, and let
α ∈ k. A representative of α is some a ∈ A with res(a) = α. A multiplicative
representative a of α is a representative which is also a pn-th power in A, for all
n ∈ N. A choice of representatives is a partial function

s : k 99K A

such that s(α) is a representative of α, for all α in the domain. To say that such a
choice is for P means that P is the domain of s, i.e. s : P −→ A. Obviously, such
a map is a choice of multiplicative representatives if s(α) is a multiplicative
representative of α, for all α in the domain of s.

We observe that, for any pre-Cohen ring (A, k), there exist many choices of
representatives for k, and of course for any subset P of k. It is obvious that the
largest subfield of k for which multiplicative representatives may be chosen is the
perfect core k(p∞), which is by definition the subfield of elements which are pn-th
powers, for all n ∈ N. Note that k(p∞) is the largest perfect subfield of k. For any
subset X of a ring, and any n ∈ N, denote by X(n) = {xn | x ∈ X} the set of n-th
powers of elements of X.

The following straightforward lemma is the starting point for the study of mul-
tiplicative representatives.

Lemma 3.2 ([24, Cf. Hilfssatz 8]). — Let (A, k) be a pre-Cohen ring, let a, b ∈
A, and let m,n ∈ N. If a ≡ b (mod mm), then apn ≡ bpn (mod mm+n).

Perhaps the most important result about multiplicative representatives is The-
orem 3.3, which is also due to Teichmüller.

Theorem 3.3 (Cf. [23, §4. Satz]). — Let (A, k) be a Cohen ring. There exists
a unique choice of multiplicative representatives for k(p∞):

s : k(p∞) −→ A.

The proof can be found in many places, for example [4, Lemma 7]. In fact, such
a map s is also multiplicative in a stronger sense, namely that s(α)s(β) = s(αβ),
for all α, β ∈ k(p∞), cf. [20, Proposition 8(iii), §4, Ch. II].

Lemma 3.4. — Let (A, k) be a non-strict Cohen ring of characteristic pm+1.
There is a unique choice of representatives

s : k(pm) −→ A(pm) ⊆ A.

Proof. — Let α ∈ k, let a, b ∈ A, and suppose that both apm and bpm are
representatives of αpm . Then both a and b are representatives of α, and in particular
a ≡ b (mod m). By Lemma 3.2, apm ≡ bpm (mod mm+1). Since the characteristic
of A is pm+1, we have apm = bpm . □

The unique choice of representatives in Lemma 3.4 will be called the pm-repre-
sentatives.

3.2. λ-maps. A subset β ⊆ k is p-independent over a subfield C ⊆ k if

[k(p)C(β1, ..., βr) : k(p)C] = pr,
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for all pairwise distinct elements β1, . . . , βr ∈ β, and for all r ∈ N; and β is a
p-basis over C if furthermore k = k(p)C(β). Equivalently, a p-basis is a maxi-
mal p-independent subset. If C is the prime field Fp, then we just speak of ‘p-
independence’ and ‘p-bases’. The cardinality of a p-basis of k does not depend on
the choice of any particular p-basis, and it is called the imperfection degree2 of
k. See [22], [14], and [15], for more information on p-independence and p-bases.

Our next task is to develop the theory of λ-maps and λ-representatives with
respect to arbitrary p-independent subsets β, which certainly may be infinite, since
in general the imperfection degree of a field may be any cardinal number.

For a cardinal ν, and n ∈ N, we define

Pν,n :=
{

(iµ)µ<ν

∣∣∣ |{µ < ν | iµ ̸= 0}| < ∞ and ∀µ < ν, 0 ⩽ iµ < pn
}

to be the set of the multi-indices of finite support, in ν-many elements, and in
which each index is a non-negative integer strictly less that pn. In this context,
‘finite support’ means that any such multi-index contains only finitely many non-
zero indices. We emphasise that this set is just a technical device to facilitate our
analysis of p-independence, and we will be mostly interested in the case n = 1. For
a p-independent set β = (βµ)µ<ν , and I = (iµ)µ<ν ∈ Pν,n, we write

βI :=
∏
µ<ν

βiµ
µ

for the I-th monomial of β. The set {βI | I ∈ Pµ,n} is a k(pn)-linear basis of
k(pn)(β). Therefore, for each α ∈ k(pn)(β), there is a unique family (λI

β(α))I∈Pν,n

of elements of k such that
α =

∑
I∈Pν,n

βIλI
β(α)pn

. (3.2.1)

Note that this sum is finite since λI
β(α) is zero for cofinitely many I ∈ Pν,n. We

refer to
λI
β : k(pn)(β) −→ k

α 7−→ λI
β(α)

as the I-th λ-map with respect to β.

3.3. Representatives and subrings. We prove in Proposition 3.6 that each Co-
hen ring of characteristic pm+1 is generated by the union of the pm-representatives
and a set of representatives for a p-basis of its residue field; this is a key ingredient
of Theorem 5.1. We begin with a lemma.

Lemma 3.5. — Let (A, k) be a non-strict Cohen ring of characteristic pm+1.
Let s : k −→ A be a choice of representatives. Then every element of A admits
a unique representation as a sum

∑m
i=0 s(αi)pi, where αi ∈ k. In particular, A is

generated as a ring by the image s(k) of s.

Proof. — We claim that, for all n ∈ N and for all a ∈ A, there exist α0, . . . , αn ∈
k such that a−

∑n
i=0 s(αi)pi ∈ mn+1

A . We prove this by induction on n. The base
case n = 0 follows from the fact that s is a choice of representatives for k. Suppose

2Imperfection degree is sometimes called Ershov degree or p-degree.
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the statement holds for some n ∈ N. Let a ∈ A and denote α := res(a) ∈ k. Let â ∈
A be such that a = s(α)+pâ. By the inductive hypothesis, there exist α0, . . . , αn ∈
k such that â −

∑n
i=0 s(αi)pi ∈ mn+1. Denote b := s(α) +

∑n
i=0 s(αi)pi+1. Now

a− b = pâ− p
∑n

i=0 s(αi)pi ∈ mn+2.
The uniqueness part of the statement follows from the fact that multiplication

by pi is an isomorphism between the additive groups A/pA and piA/pi+1A, for
i ⩽ m. If the characteristic of A is pm+1, then as soon as m+ 1 ⩽ n+ 1, the claim
shows that A is generated by s(k). □

Proposition 3.6. — Let (A, k) be a non-strict Cohen ring characteristic pm+1,
and let β be a p-basis of k with representatives s : β −→ A. Denote by sA :
k(pm) −→ A(pm) the choice of pm-representatives from Lemma 3.4. Then A is
generated by s(β) ∪ sA(k(pm)).

Proof. — Let B := [s(β) ∪ sA(k(pm))] be the subring of A generated by the
images of s and sA. By Lemma 3.5, it suffices to show that B contains a set of
representatives for each element of k. For I = (iµ)µ<ν ∈ Pν,n, we write

s(βI) :=
∏
µ<ν

(s(βµ))iµ .

We now define a function S : k −→ A by setting

S(α) :=
∑

I∈Pν,m

s(βI)sA(λI
β(α)pm

),

for α ∈ k. Applying the residue map, and comparing with Equation (3.2.1), we
can see that S(α) is a representative of α. Moreover, S(α) is an element of B, as
required. □

Remark 3.7 (Inverse systems with representatives). — Let k be a field of char-
acteristic p. Let (Am, k)m∈N be an inverse system of Cohen rings, in the sense of
Remark 2.11, where each Am has characteristic pm+1, and denote by (resn,m)n⩾m

the transition maps. Let β be a p-basis of k and, for each m, let sm : β −→ Am be
a choice of representatives. Suppose that the maps sm are compatible in the sense
that resn,m ◦ sn = sm, for n ⩾ m. Then (Am, k, sm)m∈N forms an inverse system.

Let (A, k) be the inverse limit of (Am, k)m∈N with projections (rm)m∈N. By
Remark 2.11, (A, k) is a strict Cohen ring. The inverse limit of the maps sm is a
choice of representatives s : β −→ A.

4. The Teichmüller Embedding Process

At the heart of all the structural arguments about Cohen rings is Teichmüller’s
embedding process, which we discuss in this section. The original formulation can
be found in [23, §7]. Indeed, Mac Lane attributes this technique to Teichmüller,
and describes it as the ‘Teichmüller embedding process’. See [16, Theorem 6] for
Mac Lane’s version. In [4, Lemma 12], Cohen rewrote Teichmüller’s embedding
process for an arbitrary complete local ring.

Theorem 4.1 (Teichmüller Embedding Process). — Let (A, k) be a Cohen ring,
let β ⊆ k be p-independent with representatives s : β −→ A. There exists a Cohen
ring (AT , kT ) ⊇ (A, k) such that



THE MODEL THEORY OF COHEN RINGS 9

(i) kT = k(β(p−∞)), where β(p−∞) = {βp−n | β ∈ β, n ∈ N},
(ii) s coincides with the restriction to β of the unique choice of multiplicative

representatives (kT )(p∞) −→ AT .

Proof. — This proof is closely based on those of Teichmüller ([23, §7]) and Cohen
([4, Lemma 12]). It is a recursive construction. We begin by formally adjoining a
p-th root of each s(β), for each β ∈ β. More constructively, we introduce a family
of new variables (Xβ : β ∈ β), and let

A′ := A[Xβ : β ∈ β]/
(
Xp

β − s(β) : β ∈ β
)
.

That is, A′ is the quotient of the ring A[Xβ : β ∈ β] by the ideal generated by the
polynomials Xp

β − s(β), for β ∈ β. The natural map A −→ A′ is injective, and we
identify A with its image in A′.

Taking the quotient of A′ by pA′ yields the field k′ := k(βp−1 : β ∈ β), and so
pA′ is maximal. Indeed, since A is local with unique maximal ideal pA, the maximal
ideals of A′ are those lying over pA, which shows that pA′ is the unique maximal
ideal of A′. Thus (A′, k′) is a pre-Cohen ring, and we have (A, k) ⊆ (A′, k′). Note
that β(p−1) := {βp−1 | β ∈ β} is p-independent in k′. Indeed, for each β ∈ β, we
write s′(βp−1) for the image of Xβ in the quotient ring A′. Then s′ : β(p−1) −→ A′

is a choice of representatives, and

s′(βp−1
)p = s(β),

for all β ∈ β.
Beginning with (A, k), we continue this process recursively, with recursive step

(A, k) 7−→ (A′, k′). In this way, we construct a chain (An, kn)n∈N of pre-Cohen
rings, such that β(p−n) := {βp−n | β ∈ β} is p-independent in kn = k(β(p−n)) and
sn : β(p−n) −→ An is a choice of representatives, such that

sn(βp−n

)pn

= s(β),
for all n ∈ N and all β ∈ β.

The morphisms in this chain are embeddings, which we may even view as inclu-
sions, by identifying each of (An, kn) with its image in (An+1, kn+1). The direct
limit is a pre-Cohen ring (A∞, k∞) ⊇ (A, k). Taking the completion, we obtain
a Cohen ring (AT , kT ) ⊇ (A, k). The union sT :=

⋃
n sn is a choice of represen-

tatives for βT :=
⋃

n β(p−n) which commutes with the Frobenius map. By con-
struction, we have kT = k(β(p−∞)), and so βT ⊆ (kT )(p∞). Therefore sT coincides
with the restriction to βT of the unique choice of multiplicative representatives
(kT )(p∞) −→ AT , as required. □

5. Mac Lane’s Identity Theorem

In this section we consider Cohen subrings of Cohen rings. We study the ‘iden-
tity’ of such subrings inside their overrings: in Theorem 5.1, which was first clearly
articulated by Mac Lane, we show that such a subring is determined by a choice of
representatives of a p-basis of its residue field.

Teichmüller’s discussion of this issue can be found in [23, §8]. Developing these
ideas, Mac Lane’s theorems [16, Theorem 7] and [16, Theorem 12] show that a
complete subfield of a p-adic field, in his language, is determined by a choice of
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representatives for a p-basis of the residue field. Indeed, in our view, Mac Lane is the
first to have clearly articulated this portion of the overall argument. Nevertheless,
we closely follow Cohen’s exposition, particularly relevant parts of his proof of [4,
Theorem 11], which is in fact the theorem we will discuss in the next section.

Theorem 5.1 (Mac Lane’s Identity Theorem). — Let (B, l) be a pre-Cohen
ring, with pre-Cohen subrings (A1, k1) and (A2, k2). Suppose that (A2, k2) is a
Cohen ring, i.e. is complete, and that k1 ⊆ k2. Let β be a p-basis of k1 with
representatives s : β −→ A1. If s(β) ⊆ A2 then (A1, k1) ⊆ (A2, k2).

Proof. — First we work in the case that (B, l) is non-strict of characteristic pm+1.
For i ∈ {1, 2}, let si : k(pm)

i −→ A
(pm)
i ⊆ Ai, and let sB : l(pm) −→ B(pm) ⊆ B,

be the unique choices of pm-representatives from Lemma 3.4. Let α ∈ k
(pm)
i . By

Lemma 3.4, sB(α) is the unique element of B(pm) with residue α; but si(α) is
another such element that happens to lie in A

(pm)
i ⊆ B(pm). Therefore si(α) =

sB(α), which means that sB extends si.
Since k1 ⊆ k2 ⊆ l, we have k(pm)

1 ⊆ k
(pm)
2 ⊆ l(pm). It follows that s2 extends s1.

In particular, the image s1(k(pm)
1 ) of s1 is contained in the image of s2, which in

turn is contained in A2. Also note that s(β) ⊆ A2, by assumption. By Proposition
3.6, the subring of B generated by s1(k(pm)

1 ) ∪ s(β) is A1. Therefore A1 ⊆ A2.
Finally, we suppose that (B, l) is strict. For all m ∈ N, by the preceding para-

graph, the residue ring of (A1, k1) of characteristic pm+1 is a subring of the corre-
sponding residue ring of (A2, k2). Since (A2, k2) is complete by assumption, Remark
2.11 implies that (A1, k1) is a subring of (A2, k2). □

6. Cohen’s Homomorphism Theorem and Structure Theorem

The remaining ingredient of a structure theorem is the relationship between two
arbitrary Cohen rings with the same residue field. Such a relationship exists, in the
form of a morphism, and such a morphism is uniquely determined by specifying the
image of a set of representatives of a p-basis of the residue field.

Cohen’s paper [4] appears to be the first to study the case of characteristic pm,
m > 0. In this section we state and prove a version of Cohen’s Theorem, [4,
Theorem 11], suitable for our setting.

Definition 6.1. — Let (A, k) and (B, l) be pre-Cohen rings, and let φ =
(φA, φk) : (A, k) −→ (B, l) be a morphism. Also, let β ⊆ k be a p-basis of k,
and let sA : β −→ A and sB : φk(β) −→ B be representatives. We say that φ
respects sA and sB if φA ◦ sA = sB ◦ φk|β.

Theorem 6.2 (Cohen’s Homomorphism Theorem). — Let (A, k) and (B, l) be
Cohen rings, and let φk : k −→ l be an embedding of fields such that l/φk(k)
is a separable extension. Let β be a p-basis of k and let sA : β −→ A and
sB : φk(β) −→ B be representatives. Suppose that (A, k) is strict or that (A, k) is
non-strict of characteristic at least that of (B, l). Then there exists a unique ring
homomorphism φA : A −→ B such that

φ = (φA, φk) : (A, k) −→ (B, l)
is a morphism which respects sA and sB .
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B
resB // l

sB

_g

A
resA //

φA

OO

k

φk

OO

sA

_g

Figure 6.1. Illustration of Definition 6.1

Moreover, if (A, k) and (B, l) have the same characteristic, then φ is an embed-
ding.

Proof. — This proof is a construction closely based on that of Cohen ([4, The-
orem 11]). For notational simplicity, we identify k with its image in l under the
embedding φk. Then φk is the inclusion map id, and l/k is a separable extension.
It suffices to construct a ring homomorphism A −→ B, which induces the inclusion
map k −→ l. Throughout, we denote the residue maps by resA : A −→ k and
resB : B −→ l respectively.

To begin with, we suppose that (A, k) is strict and that k is perfect. Thus β
is empty, and we dispense with both of the maps sA and sB . Since (A, k) is a
strict Cohen ring, we have (Zp,Fp) ⊆ (A, k), and there is the following natural ring
homomorphism:

φ0 : Zp −→ B.

Let T be a transcendence basis of k/Fp. Since k is perfect, we have T ⊆ k(p∞) =
k ⊆ l(p∞) ⊆ l. By Theorem 3.3, there are unique choices of multiplicative represen-
tatives: sA,0 : k −→ A and sB,0 : l(p∞) −→ B. Note that sA,0(T ) is algebraically
independent over Zp since T is algebraically independent over Fp. We consider the
subring Zp[sA,0(T )] ⊆ A, with resA(Zp[sA,0(T )]) = Fp[T ]. We may extend φ0 to a
ring homomorphism

φ1,0 : Zp[sA,0(T )] −→ B

by declaring φ1,0(sA,0(t)) = sB,0(t), for each t ∈ T . In fact, for each n ∈ N, we con-
sider the subring Zp[sA,0(T (p−n))] ⊆ A, with resA(Zp[sA,0(T (p−n))]) = Fp[T (p−n)].
As in the case n = 0, we construct a ring homomorphism

φ1,n : Zp[sA,0(T (p−n))] −→ B,

by declaring φ1,n(sA,0(tp−n)) = sB,0(tp−n), for each t ∈ T . Since sA,0 and sB,0
are multiplicative, the family (φ1,n)n∈N of ring homomorphisms forms an increas-
ing chain. Taking the direct limit (i.e. union), we obtain the subring A0 :=
Zp[sA,0(T (p−n)) | n ∈ N] ⊆ A, with resA(A0) = Fp[T (p−n) | n ∈ N], and we
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obtain the ring homomorphism
φ2 : A0 −→ B.

Localising A0 at A0 ∩ pA, we obtain the local ring A1 := (A0)A0∩pA ⊆ A, with
resA(A1) = Fp(T )perf , and we extend φ2 to a ring homomorphism

φ3 : A1 −→ B.

The final part of this construction is to extend φ3 to have domain A. Since strict
Cohen rings are henselian valuation rings, and k/Fp(T )perf is separable algebraic,
this prolongation can be accomplished by a direct application of Hensel’s Lemma,
as in e.g. [11, Lemma 9.30]. More precisely, for a separable irreducible polynomial
f ∈ A1[X] and α ∈ k with resA(f)(α) = 0, by Hensel’s Lemma we obtain a ∈ A
such that f(a) = 0. Likewise, we obtain b ∈ B with φ3(f)(b) = 0. We now extend
φ3 to a morphism

φ4 : A1[a] −→ B

by sending a 7−→ b. Note that resA(A1[a]) = Fp(T )perf(α). Taking the direct limit
of ring homomorphisms constructed in this way, we obtain a ring homomorphism

φ : A −→ B

that induces the inclusion map on the residue fields and respects sA and sB , as
required. It remains to show that φ is the unique such morphism, but this follows
from Theorem 5.1, applied to the case that β is empty.

Remaining under the assumption that (A, k) is strict, we turn to the case that k
is imperfect. We are given a p-basis β of k with representatives sA : β −→ A and
sB : β −→ B. Note that β is p-independent in l, by our assumption that l/k is
separable. By Theorem 4.1, there exists a Cohen ring (AT , kT ) ⊇ (A, k) such that

(i) kT = kperf , and
(ii) sA is the restriction to β of the multiplicative representatives

sT
A : kT −→ AT .

By another application of Theorem 4.1, there exists a Cohen ring (BT , lT ) ⊇ (B, l)
such that

(iii) lT = l(β(p−∞)), and
(iv) sB is the restriction to β of the multiplicative representatives

sT
B : (lT )(p∞) −→ BT .

Since kT ⊆ lT and kT is perfect, by the first part of this proof there exists a unique
morphism

φ : AT −→ BT

that induces the inclusion map on the residue fields.
By (ii), the composition φ ◦ sA : β −→ φ(AT ) coincides with the unique choice

of multiplicative representatives for β in φ(AT ); and by (iv), also sB coincides with
the unique choice of multiplicative representatives for β in BT . Applying Theorem
3.3, and since φ((AT )(p∞)) ⊆ (BT )(p∞), we have φ ◦ sA = sB . If follows that
both subrings φ(A) and B of BT contain φ(sA(β)) = sB(β). Since also k ⊆ l, we
may apply Theorem 5.1 to deduce that φ(A) ⊆ B. Therefore φ restricts to a ring
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homomorphism A −→ B that induces the inclusion map on the residue fields and
respects sA and sB . The uniqueness of φ again follows from Theorem 5.1. Note
that, the non-trivial proper ideals of A are mn

C , for n > 0, and the quotient A/mn
C

has characteristic pn. Thus the morphism we have constructed is an embedding if
and only if (B, l) is also strict. This completes the proof in the case that (A, k) is
strict.

Finally, we turn to the case that (A, k) and (B, l) are non-strict, of characteristics
pn and pm, respectively, for n ⩾ m. By Theorem 2.10, there exists a strict Cohen
ring (C, k). Choose representatives sC : β −→ C. By the first part of this Theorem,
there is a unique ring homomorphism φ : C −→ A which induces the identity
map on the residue field and respects sC and sA. Again note that the non-trivial
proper ideals in (C, k) are mn

C , for n ∈ N>0. Therefore φ is the composition of
the quotient C −→ C/mn

C with an isomorphism C/mn
C −→ A. Likewise there is a

unique ring homomorphism ψ : C −→ B which induces the inclusion map on the
residue fields and respects sC and sB . Again ψ is the composition of the quotient
of C −→ C/mm

C with an embedding C/mm
C −→ B. Since n ⩾ m, mn

C ⊆ mm
C , and

thus these homomorphisms give rise to a ring homomorphism A −→ B that induces
the inclusion map on the residue fields and respects sA and sB . Once again, the
uniqueness follows from Theorem 5.1. Note that the morphism is an embedding if
and only if m = n. □

Remark 6.3. — In the setting of Theorem 6.2, and in the case that (A, k) is
strict and (B, l) is of characteristic pm, the resulting morphism φ factors into a
composition of the natural quotient map (A, k) −→ (A/mm

A , k) and an embedding
(A/mm

A , k) −→ (B, l).
In our applications of Cohen’s Homomorphism Theorem in the second part of

the paper, we require the following consequence:
Corollary 6.4 (Relative Embedding Theorem). — Let (A1, k1) and (A2, k2)

be two Cohen rings, and let (A0, k0) be a Cohen subring common to both. Assume
we are given an embedding of residue fields φk : k1 −→ k2 over k0 and that both
k1/k0 and k2/φk(k1) are separable. Then, there is an embedding φ of (A1, k1) into
(A2, k2) which induces φk and fixes A0 pointwise. Moreover, if φk is an isomorphism
then φ is an isomorphism.

Proof. — Note that by assumption, (A1, k1), (A2, k2) and (A0, k0) have the same
characteristic. Let β0 be a p-basis of k0, and s0 : β0 −→ A0 be a choice of
representatives. We first show the existence of an embedding of Cohen rings φ :
A1 −→ A2 which induces φk and fixes s0(β0). Since k1/k0 is separable, we can find
a p-basis β1 of k1 prolonging β0, and a choice of representatives s1 : β1 −→ A1
prolonging s0. Note that since φk restricts to the identity on k0, φk(β1) also
contains β0. We now choose representatives s2 : φk(β1) −→ A2 such that s2
prolongs s0. By Theorem 6.2, and since k2/φk(k1) is separable, there is a morphism
φ : A1 −→ A2 that respects s1 and s2 (and hence fixes s0(β0)) and induces φk.
Since A1 and A2 have the same characteristic, φ is an embedding.

Now, let φ : A1 −→ A2 be any embedding which induces φk and fixes s0(β0).
Then the restriction φ0 of φ to A0 is a ring isomorphism between A0 and φ0(A0).
Since s0(β0) is contained in φ0(A0), by Mac Lane’s Identity Theorem (Theorem
5.1) we get A0 ⊆ φ0(A0). Symmetrically, as s0 is also a choice of representatives
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for a p-basis of the residue field of φ0(A0), we get φ0(A0) ⊆ A0. Therefore φ0 is
an automorphism of A0. By assumption, φk restricts to the identity on k0, and
so φ induces the identity on the residue field of A0. By construction of φ, φ0
fixes s0(β0). Hence in particular φ0 respects s0 and s0 (note that s0 is a choice of
representatives of the domain and codomain of φ0, which are both A0). Theorem
6.2 implies that there is a unique automorphism of A0 with these properties. As
the identity map from A0 to A0 also induces the identity on k0 and fixes s0(β0),
we conclude φ0 = idA0 .

Finally, we show that if φk is an isomorphism, then φ is an isomorphism: if φk

is an isomorphism and β1 is a p-basis of k1, then φk(β1) is a p-basis of k2. Thus,
φ(A1) contains the lift of a p-basis for k2, and hence we have A2 ⊆ φ(A1) by Mac
Lane’s Identity Theorem (Theorem 5.1). □

More explicitly, given an isomorphism between the residue fields of two Cohen
rings of the same characteristic, we get a complete understanding of its lifts to
isomorphisms of Cohen rings:

Corollary 6.5 (Cohen Structure Theorem, v.1). — Let (A1, k1) and (A2, k2)
be two Cohen rings of the same characteristic, let φk : k1 −→ k2 be an isomorphism
of residue fields, and let β ⊆ k1 be a p-basis. Consider representatives s1 : β −→ A1
and s2 : φk(β) −→ A2. There exists a unique isomorphism of Cohen rings

φ = (φA, φk) : (A1, k1) −→ (A2, k2),
which respects s1 and s2, and which is φk on the residue fields.

Proof. — If both (A1, k1) and (A2, k2) are strict then both existence and unique-
ness follow from Theorem 6.2. Suppose next that both (A1, k1) and (A2, k2)
are of characteristic pm. Let (B, k1) be a strict Cohen ring with representatives
s : β −→ B. By Theorem 6.2 there are unique morphisms φ1 = (φ1

A, idk1) :
(B, k1) −→ (A1, k1) and φ2 = (φ2

A, φk) : (B, k1) −→ (A2, k2) which respect s and s1
(resp. s2) and which induce the identity (resp. φk) on the residue field. Moreover,
both φi

A are surjective and both factor through the quotient map B −→ B/mm (cf.
Remark 6.3). Thus, by the Isomorphism Theorem, both (Ai, ki) are isomorphic to
(B/mm, k1). Therefore there is an isomorphism between them that respects s1 and
s2, and induces φk on the residue field. This isomorphism is unique, by Theorem
6.2. □

As long as one is only interested in the existence of an isomorphism of Cohen
rings, the following simplified version of the above is sufficient:

Corollary 6.6 (Cohen Structure Theorem, v.2). — Let (A1, k1) and (A2, k2)
be Cohen rings of the same characteristic, and assume that φk : k1 −→ k2 is an
isomorphism of the residue fields. There exists an isomorphism of Cohen rings

φ = (φA, φk) : (A1, k1) −→ (A2, k2),
which is φk on the residue fields.

Proof. — Immediate from Corollary 6.5. □

Our aim is now to apply Cohen’s Homomorphism Theorem to give a clear state-
ment of the relative structure of Cohen rings. That is, we will describe the mor-
phisms between Cohen rings which extend a given morphism between subrings.
Although we will not refer to the statement later on in this paper, we state and
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prove it for future reference. It should be noted once again that this is closely based
on the work of Teichmüller, Mac Lane, Cohen, and others. See for example [23],
[16], and [4].

Theorem 6.7 (Relative Homomorphism Theorem). — Let (A1, k1) ⊆ (A2, k2)
and (B1, l1) ⊆ (B2, l2) be two extensions of Cohen rings, let

φ = (φA, φk) : (A1, k1) −→ (B1, l1)
be a morphism, and let Φk : k2 −→ l2 be an embedding of fields which extends φk.
Suppose that both l2/Φk(k2) and k2/k1 are separable. Let β be a p-basis of k2 over
k1, and let sA : β −→ A2 and sB : Φk(β) −→ B2 be choices of representatives.

Then, there exists a unique morphism of Cohen rings
Φ := (ΦA,Φk) : (A2, k2) −→ (B2, l2),

that respects sA and sB , that induces Φk on the residue fields, and that extends φ.

B2 // l2

sB

s{

A2 //

ΦA

77

k2

Φk

88

sA

ck

B1 // l1

A1

φA

77

// k1

φk

88

Figure 6.2. Illustration of Theorem 6.7

Proof. — We are given a p-basis β of k2 over k1, that is each β ∈ β is of degree
p over k(p)

2 k1(β \ {β}), and k2 = k
(p)
2 k1(β). Choose any p-basis βA,1 of k1 and any

representatives sA,1 : βA,1 −→ A1. Since k2/k1 is separable, βA,2 := β ⊔ βA,1 is a
p-basis of k2. We define

sA,2 : βA,2 −→ A2

β 7−→
{
sA,1(β) β ∈ βA,1
sA(β) β ∈ β,

which is a choice of representatives for βA,2. Next we let βB,2 := φk(βA,1)⊔Φk(β).
We define

sB,2 : βB,2 −→ B2

β 7−→
{
φA(sA,1(φ−1

k (β))) β ∈ φk(βA,1)
sB(β) β ∈ Φk(β),
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which is a choice of representatives for βB,2. It follows from Theorem 6.2 that there
is a unique morphism

Φ = (ΦA,Φk) : (A2, k2) −→ (B2, k2),

which respects sA,2 and sB,2, and which is Φk on the residue fields. Observe that
Φ extends φ since in particular Φ respects sA,1 and φA ◦ sA,1 ◦ φ−1

k |φk(βA,1) (the
latter being a choice of representatives for φk(βA,1)). This proves the existence
part of our claim. For uniqueness, if Ψ is any other morphism which extends φ and
respects sA and sB then we may argue that it also respects sA,2 and sB,2, just as
for Φ. Therefore Φ = Ψ by Theorem 6.2. □

7. Cohen-Witt rings

Let k denote a field of characteristic p > 0. For each natural number n ∈ N, we
denote the n-th Witt ring over k by Wn+1(k), and the infinite Witt ring we
denote by W [k], as described, for example, in [25] and in many other places.

If k is perfect, then W [k] is a complete discrete valuation ring of characteristic
zero with residue field k. That is, (W [k], k) is a strict Cohen ring. By Theorem 6.2,
(W [k], k) may be viewed as providing the canonical example of a Cohen ring with
residue field k, canonical in the sense that for perfect k there is a canonical isomor-
phism between any two strict Cohen rings with residue field k. Likewise, (Wn(k), k)
is the canonical example of a Cohen ring with residue field k, of characteristic pn.

On the other hand, if k is imperfect, then W [k] fails to be a valuation ring. There
is a less well-known construction, appropriate for the case of imperfect residue fields,
which constructs Cohen rings as subrings of Witt rings (see e.g. [19]). To mitigate
the conflict with our own terminology, we will refer to these more concrete rings as
‘Cohen-Witt rings’. We fix a p-basis β of k. For each n ∈ N, the n-th Cohen-Witt
ring over k, which we denote by Cn+1(k), is the subring of Wn+1(k) generated by
Wn+1(k(pn)) and the elements [β] = (β, 0, ...), for β ∈ β. That is

Cn+1(k) := Wn+1(k(pn))
(
[β] | β ∈ β

)
.

We note that Cn+1(k) is a local ring, with maximal ideal (p) and residue field k.
Thus (Cn+1(k), k) is indeed a Cohen ring. There are representatives sn : β −→
Cn+1(k), given by sn(β) = [β], for β ∈ β. The maps πn : Wn+1(k) −→ Wn(k),
which are given by the truncation of the Witt vectors, restrict to surjections

πn|Cn+1(k) : Cn+1(k) −→ Cn(k).

Just as with the Witt rings, the Cohen-Witt rings equipped with these maps form
an inverse system, as in Remark 2.11, the inverse limit of which is the strict
Cohen-Witt ring over k:

C[k] := lim
←−

Cn+1(k).

The field of fractions of C[k] is often denoted by C(k). This system may be enriched
with a compatible system of representatives sn : β −→ Cn+1(k), as in Remark 3.7.
It is a consequence of Corollary 6.6 that any strict Cohen ring (A, k) is isomorphic
to the strict Cohen-Witt ring C[k], though the isomorphism is not canonical in the
sense that it depends on our choices of β and s.
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Part 2. The Model Theory

8. Theories and Completeness

Having developed the algebraic theory of Cohen rings, we are now in a position
to describe their first-order theories. Let Lring = {+,−, ·, 0, 1} denote the first-order
language of rings, and Lvf = Lring ∪{O} the expansion of Lring by a unary predicate
(usually interpreted as the valuation ring). To study the structure of the value
group, we also consider the language of ordered abelian groups Loag = {0,+,⩽}.

We consider the following theories:

Definition 8.1. — Let k be a field of characteristic p.
• Let Tpc be the Lring-theory of commutative rings with unity in which (p)

is the unique maximal ideal.
• Let Tpc(k, n) be the Lring-theory consisting of the union of Tpc with axioms

that assert of a model B that its characteristic is pn and that its residue
field kB is a elementarily equivalent to k.

• Let Tur be the Lvf -theory that asserts of a model (K, v) that v is henselian,
Ov is a valuation ring on K which is a model of Tpc, and that the charac-
teristic of K is zero.

• Let Tur(k,Γ) be the Lvf -theory extending Tur which requires in addition
for a model (K, v) that Kv is elementarily equivalent to k and that vK is
elementarily equivalent to Γ.

Note that if Γ is an ordered abelian group without minimum positive element
then Tur(k,Γ) is not consistent. We do not define Tur(k,Γ) for a field k of charac-
teristic 0.

The aim of this section is to show that Tpc(k, n) and Tur(k,Γ) are complete and to
deduce the usual AKE type consequences from this. The non-strict case is a simple
application of the Structure Theorem for Cohen rings of positive characteristic:

Theorem 8.2. — For any field k of positive characteristic, the Lring-theory
Tpc(k, n) is complete.

Proof. — Let B1, B2 |= Tpc(k, n). By the Keisler-Shelah Theorem ([21]), replac-
ing B1 and B2 with suitable ultrapowers if necessary, we may assume that there
is an Lring-isomorphism φk : kB1 −→ kB2 . Applying the Structure Theorem for
Cohen rings (Corollary 6.6), we get an isomorphism φ : B1 −→ B2 that induces
φk. In particular this implies that B1 and B2 are elementarily equivalent. □

For the general case, we use the usual proof method of combining the Structure
Theorem with a coarsening argument which allows us to apply the Ax-Kochen/
Ershov Theorem in the equicharacteristic 0 case:

Theorem 8.3. — For any field k of positive characteristic and any ordered
abelian group Γ with minimum positive element, the Lvf -theory Tur(k,Γ) is com-
plete.

Proof. — Let (K1, v1), (K2, v2) |= Tur(k,Γ). By the Keisler-Shelah Theorem
([21]), replacing each structure with a suitable ultrapower if necessary, we may
assume that both (K1, v1) and (K2, v2) are ℵ1-saturated, and that there is an Lring-
isomorphism φk : K1v1 −→ K2v2 and an Loag-isomorphism φΓ : v1K1 −→ v2K2.
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For i = 1, 2, let wi denote the finest proper coarsening of vi (note that wi exists
because viKi has a minimum positive element) and let v̄i denote the valuation
induced by vi on the residue field Kiwi.

By ℵ1-saturation, both valued fields (Kiwi, v̄i) are spherically complete and
hence the valuation rings Ov̄i

are strict Cohen rings. By the Structure Theorem for
Cohen rings (Corollary 6.6), there exists an isomorphism φ : Ov̄1 −→ Ov̄2 that in-
duces φk. Note that φΓ also induces an isomorphism φ̄Γ : w1K1 −→ w2K2 because
any isomorphism of ordered abelian groups sends a minimum positive element (and
hence the generated convex subgroup) to another such. Since both (Ki, wi) are
henselian of equicharacteristic zero, the Ax-Kochen/Ershov principle ([25, AKE-
Theorem 5.1]) implies that (K1, w1) and (K2, w2) are elementarily equivalent.

It follows by the ∅-definability of the valuation vi in Ki (this is a variant of
Robinson’s classical definition of Zp in Qp, see, e.g., [6, Corollary 2]) that (K1, v1)
and (K2, v2) are elementarily equivalent, as required. □

Remark 8.4. — In fact, Bélair proves relative quantifier elimination for the val-
ued field sort of an unramified henselian valued field in the ω-sorted language Lcoω

down to the sorts for the residue rings O/mn (cf. [2, Théorème 5.1]). Applying this
quantifier elimination, Theorem 8.3 can also be deduced from Theorem 8.2.

In particular, Theorem 8.3 immediately implies the following Ax-Kochen/Ershov-
type result, sometimes referred to as an AKE≡-principle:

Corollary 8.5 (Ax-Kochen/Ershov principle for unramified henselian valued
fields). — Let (K, v) and (L,w) be two unramified henselian valued fields. Then

Kv ≡ Lw︸ ︷︷ ︸
in Lring

and vK ≡ wL︸ ︷︷ ︸
in Loag

⇐⇒ (K, v) ≡ (L,w)︸ ︷︷ ︸
in Lvf

.

Remark 8.6. — Corollary 8.5 above is essentially claimed by Bélair in [2, Corol-
laire 5.2]. However, Bélair’s proof only goes through in the case of a perfect residue
field, since it uses the rings of Witt vectors.

The Ax-Kochen/Ershov Principle, above, immediately gives an axiomatisation
of the complete theories of unramified henselian valued fields, as follows.

Corollary 8.7. — Let (K, v) be an unramified henselian valued field of mixed
characteristic. The complete Lvf -theory of (K, v) is axiomatised by

(i) (K, v) is an henselian valued field of mixed characteristic (0, p),
(ii) the value group is elementarily equivalent to vK and v(p) is minimum

positive, and
(iii) the residue field is elementarily equivalent to Kv.

In particular, we get an axiomatization of the Lvf -theory of (C(k), v), relative
to the Lring-theory of the residue field k.

9. Relative model completeness

In analogy to the case of unramified henselian fields with perfect residue field
(cf. [25, Theorem 7.2]), we also get an AKE⪯-principle for the case of arbitrary
residue fields. To prove relative completeness, or in other words an AKE≡-principle
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for unramified henselian valued fields, it is sufficient to know that Cohen rings are
unique up to isomorphism. However, in order to prove the AKE⪯-principle for
unramified henselian valued fields, we need to apply the Relative Structure Theorem
(Corollary 6.4). We first state the non-strict version:

Proposition 9.1 (Relative model completeness, non-strict version). — Given
A,B |= Tpc(k, n) with A ⊆ B such that the induced embedding of residue fields
kA ⊆ kB is an elementary embedding (in Lring), we have

A ⪯ B.

Proof. — Let B1, B2, A |= Tpc(k, n) with A ⊆ B1, B2 two extensions. We sup-
pose that the induced extensions kA ⪯ kBi

, for i = 1, 2, are elementary. We claim
that B1 and B2 are elementarily equivalent over A, symbolically B1 ≡A B2.

By the Keisler-Shelah Theorem ([21]), replacing B1 and B2 with suitable ul-
trapowers if necessary, we may assume that there is an Lring-isomorphism φk :
kB1 −→ kB2 that fixes kA pointwise. By Corollary 6.4, there is an isomorphism
φ : (B1, k1) −→ (B2, k2) that induces φk and fixes A pointwise. In particular, B1
and B2 are elementarily equivalent over A. This proves the claim.

We return to the setting of an extension A ⊆ B of models of Tpc(k, n) for which
kA ⪯ kB is elementary. From the claim it follows that A ≡A B, equivalently the
extension A ⊆ B is elementary. □

For the strict version of the relative model completeness theorem, we combine
the Relative Structure Theorem (Corollary 6.4) with the coarsening method and
well-known results from the equicharacteristic zero world.

Theorem 9.2 (Relative model completeness). — Given an extension (K, v) ⊆
(L,w) of unramified henselian valued fields such that the induced embeddings of
residue fields Kv ⊆ Lw and value groups vK ⊆ wL are elementary (in Lring and
Loag respectively), we have

(K, v) ⪯ (L,w).

Proof. — Let (Ki, vi) |= Tur(k,Γ), for i = 0, 1, 2, be such that (K0, v0) ⊆
(K1, v1), (K2, v2) are two extensions of valued fields. We suppose that the residue
field extensions K0v0 ⪯ Kivi, and the value group extensions v0K0 ⪯ viKi, both
for i = 1, 2, are elementary. We claim that (K1, v1) and (K2, v2) are elementarily
equivalent over (K0, v0), symbolically (K1, v1) ≡(K0,v0) (K2, v2).

By the Keisler-Shelah Theorem ([21]), replacing each valued field with a suitable
ultrapower if necessary, we may assume that all three valued fields are ℵ1-saturated
and that there is an isomorphism φk : K1v1 −→ K2v2 that fixes K0v0 pointwise,
and an isomorphism φΓ : v1K1 −→ v2K2 that fixes v0K0 pointwise. For i = 0, 1, 2,
let v̂i be the finest proper coarsening of vi, and let v̄i be the valuation induced on
Kiv̂i by vi. By ℵ1-saturation, all three (Kiv̂i, v̄i) are strict Cohen rings. Note also
that these coarsenings are compatible in the sense that, for both i = 1, 2, we have
extensions (K0, v̂0) ⊆ (Ki, v̂i) and (K0v̂0, v̄0) ⊆ (Kiv̂i, v̄i). Moreover φΓ induces an
isomorphism φ̂Γ : v̂1K1 −→ v̂2K2 that fixes v̂0K0 pointwise, since φΓ restricts to
an isomorphism between the convex subgroups ⟨v1(p)⟩ and ⟨v2(p)⟩, and since v̂iKi

is the quotient of viKi by ⟨vi(p)⟩.
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By Corollary 6.4, there is an isomorphism φ : (K1v̂1, v̄1) −→ (K2v̂2, v̄2) that
induces φk and fixes K0v̂0 pointwise. In particular K1v̂1 and K2v̂2 are elementarily
equivalent over K0v̂0.

Therefore (K1, v̂1) and (K2, v̂2) are two henselian valued fields of equicharac-
teristic zero, both extending (K0, v̂0), with value groups isomorphic over v̂0K0
and residue fields elementarily equivalent over K0v̂0. It follows from [12, Theo-
rem 7.1] that (K1, v̂1) and (K2, v̂2) are elementarily equivalent over (K0, v̂0), i.e.
(K1, v̂1) ≡(K0,v̂0) (K2, v̂2). Since the valuation rings of all three valuations vi

are ∅-definable by the same Lring-formula in each field Ki (again, this is a vari-
ant of Robinson’s classical definition of Zp in Qp, see, e.g., [6, Corollary 2]), it
follows that (K1, v1) and (K2, v2) are elementarily equivalent over (K0, v0), i.e.
(K1, v1) ≡(K0,v0) (K2, v2). This proves the claim.

We return to the setting of an extension (K, v) ⊆ (L,w) of models of Tur for
which Kv ⪯ Lw and vK ⪯ wL are elementary. From the claim it follows that
(K, v) ≡(K,v) (L,w), equivalently the extension (K, v) ⊆ (L,w) is elementary. □

Remark 9.3. — In fact, the relative model completeness for non-strict Cohen
rings (Proposition 9.1) can also be combined with a result by Bélair ([2, Corol-
laire 5.2(2)]) to show model completeness, albeit in a slightly different (ω-sorted)
language.

As a consequence, we get the following embedding version of the Ax-Kochen/
Ershov result:

Corollary 9.4. — Let (K, v) ⊆ (L,w) be two unramified henselian valued
fields. Then, we have

Kv ⪯ Lw︸ ︷︷ ︸
in Lring

and vK ⪯ wL︸ ︷︷ ︸
in Loag

⇐⇒ (K, v) ⪯ (L,w)︸ ︷︷ ︸
in Lvf

.

For Cohen rings, or more generally unramified henselian valued fields taking
values in a Z-group, our result simplifies to:

Corollary 9.5. — Let (K, v) ⊆ (L,w) be two unramified henselian valued
fields with value groups vK ≡ wL ≡ Z. Then, we have

Kv ⪯ Lw︸ ︷︷ ︸
in Lring

⇐⇒ (K, v) ⪯ (L,w)︸ ︷︷ ︸
in Lvf

.

10. Embedding lemma and relative existential completeness

The aim of this section is to prove an embedding lemma for unramified henselian
valued fields. This will be applied to prove relative existential completeness of
unramified henselian valued fields of fixed finite degree of imperfection as well as
to show stable embeddedness of residue field and value group in the subsequent
section. The proof of the embedding lemma (i.e. the next proposition) is a refined
version of the proofs given in [12, Lemmas 5.6 and 6.4]. In Kuhlmann’s terminology,
we show that the class of ℵ1-saturated models of Tur satisfies an appropriate version
of the Relative Embedding Property (cf. [12, p. 31]).

Proposition 10.1 (Embedding Lemma). — Let (L1, v1) and (L2, v2) be ex-
tensions of (K, v), and assume that all three are ℵ1-saturated models of Tur. Sup-
pose that L1v1/Kv is regular and v1L1/vK is torsion-free. Moreover, assume that
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(L2, v2) is |L1|+-saturated and that there are embeddings φk : L1v1 −→ L2v2 over
Kv and φΓ : v1L1 −→ v2L2 over vK. Suppose that L2v2/φk(L1v1) is separable.
Then, there is an embedding φ : (L1, v1) −→ (L2, v2) over K that induces φk and
φΓ on residue field and value group respectively.

Moreover, if φk and φΓ are elementary embeddings, then any such embedding φ
is elementary.

Proof. — Since (K, v) is henselian and unramified, it is defectless, therefore our
assumptions on value group and residue field imply that K is relatively algebraically
closed in L1. Let w denote the finest proper coarsening of v on K, and, likewise,
let wi denote the finest proper coarsening of vi on Li (for i = 1, 2). Note that
w is the restriction of each wi to K. By our saturation assumption, the valued
fields (Kw, v̄) and (Liwi, v̄i) are all Cohen fields. The inclusion (K,w) ⊆ (L1, w1)
gives rise to an inclusion Kw ⊆ L1w1. The embedding φΓ induces an embedding
ψΓ : w1L1 −→ w2L2 over wK. Moreover, φk induces an (not necessarily unique)
embedding

ψk : (L1w1, v̄1) −→ (L2w2, v̄2)
over (Kw, v̄) by Cohen’s Homomorphism theorem (Theorem 6.2). We now fix one
such ψk. We note that, in order to show that an embedding φ of a subfield of
(L1, v1) into (L2, v2) induces φk, it suffices to show that it induces ψk:

Claim 1. — For any (F,w1, v1) ⊆ (L1, w1, v1) extending (K,w, v), if

φ : (F,w1) −→ (L2, w2)

is an embedding over K that induces ψk, then φ is also an embedding

φ : (F, v1) −→ (L2, v2)

that induces φk.

Proof of claim. — Note that ψk is an embedding of valued fields (L1w1, v̄1) −→
(L2w2, v̄2). For a ∈ F , we have

v1(a) ⩾ 0 ⇔ w1(a) ⩾ 0 and v̄1(aw1) ⩾ 0
⇔ w2(φ(a)) ⩾ 0 and v̄2(ψk(aw1)) ⩾ 0
⇔ w2(φ(a)) ⩾ 0 and v̄2((φ(a))w2) ⩾ 0
⇔ v2(φ(a)) ⩾ 0.

Since φ induces ψk, and ψk is an embedding (Fw1, v̄1) −→ (L2w2, v̄2) that induces
φk, it follows that φ induces φk. □claim

We now adapt the proof of [12, Lemmas 5.6 and 6.4] carefully to our setting, in
order to construct an embedding φ : (L1, v1) −→ (L2, v2) over K that induces φk

and φΓ. We also use φ to denote the restriction of φ to any subfield of L1. Let T
be a standard valuation transcendence basis of (L1, w1)/(K,w), i.e.

T = {xi, yi | i ∈ I, j ∈ J}

such that the set of values {w1(xi)}i∈I is a maximal rationally independent set in
w1L over wK and such that the set of residues {yjw1}j∈J is a transcendence base
of L1w1 over Kw. Let K ′ be the relative algebraic closure of K(T ) in L1, and, by
an abuse of notation, let w1 also denote the restriction of w1 to K ′ and its subfields.
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Note that (K ′, w1)/(K,w) is without transcendence defect, by [12, Corollary 2.4].
See [12, p. 4] for the definition of ‘without transcendence defect’.

Step 1: Extending to valued function fields without transcendence
defect. Let L be a subfield of K ′ that is a finitely generated extension of K. Since
K is relatively algebraically closed in L, (L,w1)/(K,w) is a valued function field
without transcendence defect. By [12, Theorem 1.9], (L,w1)/(K,w) is strongly
inertially generated, i.e. there is a transcendence basis TL = {xi, yj | i ∈ IL, j ∈
JL} ⊆ L such that

(i) w1L = w1K(TL) = wK ⊕
⊕

i Z · w1(xi)
(ii) {yjw1}j∈JL

is a separating transcendence base of Lw1/Kw, and
(iii) there is an element a ∈ Lh (the henselization of L with respect to w1)

such that Lh = K(TL)h(a), w1(a) = 0, and
(
K(TL)w1

)
(aw1)/K(TL)w1 is

a separable extension of degree [K(TL)h(a) : K(TL)h].
Note that in our case, the separability in (ii) and (iii) is automatic, since w1 is of
residue characteristic zero. We now explore these three properties, one after the
other, in order to construct an embedding φ : (L, v1) −→ (L2, v2) over K that
induces φk and φΓ.

Claim 2. — v1L = vK ⊕
⊕

i Z · v1(xi).

Proof of claim. — Suppose there are ni ∈ Q and α ∈ vK such that α +
∑

i ni ·
v1(xi) = 0. Then (α + Z) +

∑
i ni · w1(xi) = 0 + Z. By Q-linear independence of

the w1(xi) over wK in w1L, all the ni are zero. Therefore the v1(xi) are Q-linearly
independent from vK in v1L. Thus vK ⊕

⊕
i Z · v1(xi) ⩽ v1L.

Let γ ∈ v1L. There exist ni ∈ Z and α ∈ vK such that (γ + Z) = (α + Z) +∑
i niw1(xi). Therefore for some β ∈ vK we have γ = β +

∑
i niv1(xi). □claim

Next, we choose T ′L = {x′i, y′j | i ∈ IL, j ∈ JL} ⊆ L2 such that
(i) v2(x′i) = φΓ(v1(xi)), for each i ∈ IL, and

(ii) y′jw2 = ψk(yjw1), for each j ∈ JL.
Immediately: w2(x′i) = ψΓ(w1(xi)), for each i ∈ IL. Exactly as in the proof of [12,
Lemma 5.6], there is an isomorphism φ : (K(TL), w1) −→ (K(T ′L), w2) that maps

xi 7−→ x′i

yj 7−→ y′j ,

and which therefore induces ψk and ψΓ.

Claim 3. — φ is also an isomorphism φ : (K(TL), v1) −→ (K(T ′L), v2) ⊆
(L2, v2) which induces φk and φΓ.

Let f ∈ K[TL], written f =
∑

k ck

∏
i x

µk,i

i

∏
j y

νk,j

j , for ck ∈ K.

Proof of claim. — We already know that φ is an isomorphism of fields, inducing
both ψK and ψΓ. By Claim 1, φ is moreover an isomorphism of valued fields with
respect to the vi’s that induces φk.



THE MODEL THEORY OF COHEN RINGS 23

We now check that it induces φΓ, first working in the case f ∈ K[xi | i ∈ IL]
and using the Q-linear independence over vK of the v1xi, and of the v2x

′
i:

v2(φ(f)) = min
k

{v2(ck) +
∑

i

µk,iv2x
′
i}

= min
k

{v2(ck) +
∑

i

µk,iφΓ(v1xi)}

= φΓ(min
k

{v1(ck) +
∑

i

µk,iv1xi})

= φΓ(v1(f)).

Since the value group of K[xi | i ∈ IL] with respect to v1 is already vK ⊕
⊕

i Z ·
v1xi = v1K(TL), indeed φ induces φΓ. □claim

By the universal property of henselizations, φ extends to an isomorphism
φ : (K(TL)h, w1) −→ (K(T ′L)h, w2) ⊆ (L2, w2)

where the henselizations are taken with respect to wi (for i ∈ {1, 2}). Note that φ
still induces both ψk and ψΓ since henselizations are immediate extensions. Thus,
by Claim 1, φ is also an isomorphism (K(TL)h, v1) −→ (K(T ′L)h, v2). Since the
henselization K(TL)h of K(TL) with respect to w1 is a subfield of the henselization
with respect to v1, which is an immediate extension of (K(TL), v1), φ induces φk

and φΓ.
Recall that by property (iii) of strong inertial generation, there exists an element

a ∈ Lh such that Lh = K(TL)h(a), w1(a) = 0, and (K(TL)hw1)(aw1)/K(TL)hw1 is
a separable extension of degree [K(TL)h(a) : K(TL)h].

Let f ∈ O(K(TL)h,w1)[X] be such that fw1 is the minimal polynomial of aw1 over
K(TL)hw1. By henselianity, there exists a unique root a′ ∈ L2 of φ(f) such that
a′w2 = ψk(aw1).

Claim 4. — φ extends to an isomorphism
φ : (K(TL)h(a), v1) −→ (K(T ′L)h(a′), v2) ⊆ (L2, v2)

which maps a to a′ and induces φk and φΓ.

Proof of claim. — Mapping a 7−→ a′ allows us to extend φ to an isomorphism
of fields φ : K(TL)h(a) −→ K(T ′L)h(a′). By henselianity of (K(TL)h, w1), φ is an
isomorphism of valued fields (K(TL)h(a), w1) −→ (K(T ′L)h(a′), w2).

We now argue that φ induces ψk. Since 1, aw1, . . . , a
n−1w1 are linearly indepen-

dent over K(TL)hw1, we have w1
( ∑

i<n cia
i
)

= mini w1(ci), for all ci ∈ K(TL)h.
In particular, we have

O(K(TL)h(a),w1) =
{ ∑

i<n

cia
i

∣∣∣ ci ∈ O(K(TL)h,w1)

}
.

Let g ∈ O(K(TL)h,w1)[X]. Then φ induces ψk since we have

(φ(g(a)))w2 = (φ(g)(a′))w2 = (φ(g)w2)(a′w2)
= (ψk(gw1))(ψk(aw1)) = ψk((g(a))w1).

Thus, by Claim 1, φ : (K(TL)h(a), v1) −→ (K(T ′L)h(a′), v2) is an isomorphism that
induces φk. Finally, the value group of (K(TL)h(a), v1) is torsion over the value
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group of (K(TL)h, v1): for each γ ∈ v1K(TL)h(a) we have nγ ∈ v1K(TL)h. Since
the restriction of φ to K(TL)h induces φΓ on v1K(TL)h, and multiplication by n in
ordered abelian groups is injective, we conclude that φ induces φΓ. □claim

This finishes the construction of an embedding φ : (L, v1) −→ (L2, v2) that
induces φk and φΓ. Therefore, we have completed Step 1.

By saturation, we obtain an embedding

φ : (K ′, v1) −→ (L2, v2)

over K that induces φk and φΓ. More precisely, we realise the finitely consistent
type

tpqf((K ′, v1)/(K, v))∪{v(xc) = φΓ(v1(c)) | c ∈ K ′}∪{xcv = φk(cv1) | c ∈ O(K′,v1)},

which is a type over |K ′|-many parameters.
Step 2: Extending to immediate function fields. Our present aim is to

extend φ to an embedding (L1, v1) −→ (L2, v2) over K that induces φk and φΓ.
Since K ′ contains a standard valuation transcendence basis for (L1, w1)/(K,w),
we have that w1L1/w1K

′ is torsion and L1w1/K
′w1 is algebraic. Since K ′ is rela-

tively algebraically closed in L1, it follows that (K ′, v1) and (K ′, w1) are henselian.
Because char(K ′w1) = 0, we conclude that the extension (L1, w1)/(K ′, w1) is im-
mediate (for example see [12, Lemma 3.7]). Thus, so is (L1, v1)/(K ′, v1). Therefore
any extension of φ to an embedding (L1, v1) −→ (L2, v2) automatically induces φk

and φΓ.
Consider a finitely generated subextension F/K ′ of L1/K

′; then (F, v1)/(K ′, v1)
is an immediate function field. In fact, proceeding iteratively, it suffices to find
a way to extend φ to immediate function fields of transcendence degree 1. By
[13, Theorem 2.2], such extensions are henselian rational, i.e. subextensions of the
henselization of a simple transcendental and immediate extension, of transcendental
type.

Suppose we have extended φ to an embedding φ : (F0, v1) −→ (L2, v1) over K
that induces φk and φΓ, where (F0, v1) is the henselization of a finitely generated
extension of K ′. Let b ∈ L1 be transcendental over F0. Then b is a pseudo-limit
of a pseudo-Cauchy sequence (bρ)ρ<σ ⊆ F0 of transcendental type, with respect to
v1: as (F0, v1) is henselian and algebraically maximal, all its immediate extensions
are of transcendental type. Then (φ(bρ))ρ<σ is a pseudo-Cauchy sequence in L2,
also of transcendental type, now with respect to v2. By saturation, this sequence
has a pseudo-limit b′ ∈ L2. We extend φ by mapping b 7−→ b′ to an isomorphism
of fields F0(b) −→ φ(F0)(b′). Automatically, we get that

φ : (F0(b), v1) −→ (φ(F0)(b′), v2) ⊆ (L2, v2)

is an isomorphism of valued fields since pseudo-Cauchy sequences of transcendental
type determine the isomorphism type of the valued field generated by a pseudo-limit
(see [8, Theorem 2]).

Finally, we extend φ to the henselization of (F0(b), v1), which is a subfield of
(L1, v1). This is accomplished by applying the universal property of the henseliza-
tion once again.
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We have now constructed an embedding φ : (L1, v1) −→ (L2, v2) over K which
induces φk and φΓ. Last but not least, if both φk and φΓ are elementary em-
beddings, the AKE⪯-principle (Corollary 9.4) implies that φ is in fact an elemen-
tary embedding of unramified henselian valued fields, as desired. This finishes the
proof. □

Theorem 10.2. — Let (K, v) ⊆ (L,w) be an extension of unramified henselian
valued fields such that Kv and Lw have the same finite degree of imperfection. If
the induced embeddings of residue field Kv ⊆ Lw and value group vK ⊆ wL are
existentially closed (in Lring and Loag respectively), we have

(K, v) ⪯∃ (L,w).

Proof. — By taking ultrapowers if necessary, we may assume that both (K, v)
and (L,w) are ℵ1-saturated. Let (K∗, v∗) be a |L|+-saturated elementary extension
of (K, v). Since Kv ⪯∃ Lw and vK ⪯∃ wL, there are embeddings φk : Lw −→
(Kv)∗ = K∗v∗ over Kv and φΓ : wL −→ (vK)∗ = v∗K∗ over vK. Let β ⊆ Kv be
a p-basis. Since Kv ⪯∃ Lw, β is also p-independent in Lw; in particular Lw/Kv
is separable. Since the degree of imperfection of Lw is the same as that of Kv,
β is a p-basis of Lw. Since K∗v∗ is an elementary extension of Kv, β is also a
p-basis of K∗v∗. Therefore K∗v∗/φk(Lw) is separable. Finally, since vK ⪯∃ wL,
the group wL/vK is torsion-free. Thus we may apply Proposition 10.1 to obtain an
embedding φ : (L,w) −→ (K∗, v∗) over K that induces φk and φΓ. In particular,
(K, v) ⪯∃ (L,w). □

Note that the reason why we require a fixed finite degree of imperfection in
Theorem 10.2 is that when we embed Lw into an elementary extension of Kv in
the proof, we need to make sure that this latter extension is separable in order to
apply Proposition 10.1.

As a consequence of Theorem 10.2, we get the following existential version of the
Ax-Kochen/Ershov result:

Corollary 10.3. — Let (K, v) ⊆ (L,w) be two unramified henselian valued
fields such that Kv and Lw have the same finite degree of imperfection. Then, we
have

Kv ⪯∃ Lw︸ ︷︷ ︸
in Lring

and vK ⪯∃ wL︸ ︷︷ ︸
in Loag

⇐⇒ (K, v) ⪯∃ (L,w)︸ ︷︷ ︸
in Lvf

.

11. Stable embeddedness

In this final section, we comment on the structure induced on the residue field
and value group in unramified henselian valued fields.

Definition 11.1. — Let M be a structure and let P ⊆ Mk be a definable
set. We say that P is stably embedded if for all formulas φ(x, y) and all b ∈ M |y|,
φ(Mk|x|, b) ∩ P |x| is P -definable.

In order to be able to consider the residue field and the value group as definable
sets in a valued field (respectively, in a non-strict Cohen ring), it is necessary to
switch from the language of valued fields (respectively, the language of rings) to a
multisorted setting. Neither the results nor the proofs in this section are sensitive
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to this technicality. An alternative approach is to widen the definition of stable
embeddedness to also apply to interpretable sets, as discussed in [17].

In the appendix to [3], Chatzidakis and Hrushovski show stable embeddedness of
a type-definable set is equivalent to an automorphism-lifting criterion in saturated
models. This shows:

Theorem 11.2. — Let A |= Tpc(k, n). Then kA is stably embedded in A.
Proof. — By the Structure Theorem (Corollary 6.6), each automorphism of the

residue field kA lifts to an automorphism of the (non-strict) Cohen ring A. In par-
ticular this holds for sufficiently saturated models, and thus kA is stably embedded
as a pure field by [3, Appendix. Lemma 1]. □

Our aim is now to show that both residue field and value group are stably em-
bedded in unramified henselian valued fields. Following the approach in [7, Lemma
3.1], we do this via our embedding lemma. More precisely, stable embeddedness
follows from Proposition 10.1 in a straightforward manner since the type of an ele-
ment of the residue field (respectively, the value group) over the residue field (resp.,
value group) of an elementary submodel determines the type of that element over
the submodel:

Theorem 11.3. — Let (K, v) be an unramfied henselian valued field. Then
the value group vK and the residue field Kv are both stably embedded, as a pure
ordered abelian group and as a pure field, respectively.

Proof. — In light of Proposition 10.1, this is exactly the same argument as the
proof of [7, Lemma 3.1]. □

As an immediate consequence, we get the following generalization of [25, Theo-
rem 7.3] to the case of imperfect residue fields:

Corollary 11.4. — Let (K, v) be an unramified henselian valued field. Then
each subset of Kvn which is Lvf -definable in (K, v) is already Lring-definable in Kv.

We now give an example that stable embeddedness of the residue field no longer
holds for finite extensions of unramified henselian valued fields. A valued field (K, v)
of mixed characteristic (0, p) is finitely ramified if the interval (0, v(p)] is finite.
The following example shows that an analogue of Theorem 11.3 does not hold for
all finitely ramified henselian valued fields.

Example 11.5. — Consider a field k of characteristic p > 2 with elements α1, α2 ∈
k such that

(i) there is an automorphism φ of k which maps α1 to α2, and
(ii) α1 and α2 lie in different multiplicative cosets of k×2.

Let (K, v) be an unramified henselian valued field with residue field k. We distin-
guish a representative a1 ∈ res−1(α1) of α1, and let (L,w) be the extension of (K, v)
given by adjoining a square-root b1 of pa1. Then (L,w) is henselian and finitely
ramified, and (L,w)/(K, v) is a quadratic extension with ramification degree e = 2
and inertia degree f = 1. It is also easy to see that L contains no element b2
such that b2

2 = pa2, where a2 is any representative of α2. Suppose that Φ is an
automorphism of (L,w) which lifts φ. Then

res(Φ(b1)2/p) = res(Φ(a1)) = φ(res(a1)) = α2,
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showing that Φ(b1) is just such a non-existent element b2 of L, which is a contra-
diction.

Note that there are elementary extensions (L∗, w∗) of (L,w) with an automor-
phism φ∗ on the residue field L∗w∗ such that (i) and (ii) still hold. These can
be obtained by adding a symbol for the automorphism φ to the language on the
residue field before saturating. The argument above shows in fact that in none of
these models, φ∗ can be lifted to an automorphism of L∗.

Therefore the residue field Lw = k is not stably embedded in (L,w). Finally,
note that there are many such fields k; for example consider k = Fp(α1, α2) where
α1, α2 are algebraically independent over Fp.
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