Strichartz estimates with loss of derivatives under a weak dispersion property for the wave operator
Confluentes Mathematici, Volume 11 (2019) no. 1, p. 59-78

This paper can be considered as a sequel of [4] by Bernicot and Samoyeau, where the authors have proposed a general way of deriving Strichartz estimates for the Schrödinger equation from a dispersive property of the wave propagator. It goes through a reduction of H 1 -BMO dispersive estimates for the Schrödinger propagator to L 2 -L 2 microlocalized (in space and in frequency) dispersion inequalities for the wave operator. This paper aims to contribute in enlightening our comprehension of how dispersion for waves implies dispersion for the Schrödinger equation. More precisely, the hypothesis of our main theorem encodes dispersion for the wave equation in an uniform way, with respect to the light cone. In many situations the phenomena that arise near the boundary of the light cone are the more complicated ones. The method we present allows to forget those phenomena we do not understand very well yet. The second main step shows the Strichartz estimates with loss of derivatives we can obtain under those assumptions. The setting we work with is general enough to recover a large variety of frameworks (infinite metric spaces, Riemannian manifolds with rough metric, some groups, ...) where the lack of knowledge of the wave propagator is an obstacle to our understanding of the dispersion phenomena.

Received : 2018-06-16
Revised : 2019-02-25
Accepted : 2019-02-25
Published online : 2019-08-28
DOI : https://doi.org/10.5802/cml.56
Classification:  35B30,  42B37,  47D03,  47D06
Keywords: dispersive inequalities; Strichartz inequalities; heat semigroup; Schrödinger group; wave operator
@article{CML_2019__11_1_59_0,
     author = {Valentin Samoyeau},
     title = {Strichartz estimates with loss of derivatives under a weak dispersion property for the wave operator},
     journal = {Confluentes Mathematici},
     publisher = {Institut Camille Jordan},
     volume = {11},
     number = {1},
     year = {2019},
     pages = {59-78},
     doi = {10.5802/cml.56},
     language = {en},
     url = {https://cml.centre-mersenne.org/item/CML_2019__11_1_59_0}
}
Samoyeau, Valentin. Strichartz estimates with loss of derivatives under a weak dispersion property for the wave operator. Confluentes Mathematici, Volume 11 (2019) no. 1, pp. 59-78. doi : 10.5802/cml.56. https://cml.centre-mersenne.org/item/CML_2019__11_1_59_0/

[1] Hajer Bahouri; Patrick Gérard; Chao-Jiang Xu Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg, J. Anal. Math., Tome 82 (2000), pp. 93-118 | Article | MR 1799659

[2] Pierre H. Bérard On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., Tome 155 (1977) no. 3, pp. 249-276 | MR 0455055

[3] Frédéric Bernicot Use of abstract Hardy spaces, real interpolation and applications to bilinear operators, Math. Z., Tome 265 (2010) no. 2, pp. 365-400 | Article | MR 2609316

[4] Frederic Bernicot; Valentin Samoyeau Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator, Annali della Scuola Normale Superiore di Pisa, Tome XVII (2017) no. 5, pp. 969-1029 https://hal.archives-ouvertes.fr/hal-01024258 (48 pages)

[5] Frédéric Bernicot; Jiman Zhao New abstract Hardy spaces, J. Funct. Anal., Tome 255 (2008) no. 7, pp. 1761-1796 | Article | MR 2442082

[6] Jean-Marc Bouclet Strichartz estimates on asymptotically hyperbolic manifolds, Anal. PDE, Tome 4 (2011) no. 1, pp. 1-84 | Article | MR 2783305

[7] Jean-Marc Bouclet; Nikolay Tzvetkov Strichartz estimates for long range perturbations, Amer. J. Math., Tome 129 (2007) no. 6, pp. 1565-1609 | Article | MR 2369889

[8] Jean Bourgain Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., Tome 3 (1993) no. 2, pp. 107-156 | Article | MR 1209299

[9] Nicolas Burq; Patrick Gérard; Nicolay Tzvetkov Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., Tome 126 (2004) no. 3, pp. 569-605 http://muse.jhu.edu/journals/american_journal_of_mathematics/v126/126.3burq.pdf | MR 2058384

[10] Gilles Carron; Thierry Coulhon; El-Maati Ouhabaz Gaussian estimates and L p -boundedness of Riesz means, J. Evol. Equ., Tome 2 (2002) no. 3, pp. 299-317 | Article | MR 1930609

[11] Thierry Coulhon; Adam Sikora Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem, Proc. Lond. Math. Soc. (3), Tome 96 (2008) no. 2, pp. 507-544 | Article | MR 2396848

[12] Edward B. Davies Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc. (2), Tome 55 (1997) no. 1, pp. 105-125 | Article | MR 1423289

[13] Gerald B. Folland Introduction to partial differential equations, Princeton University Press, Princeton, NJ (1995), xii+324 pages | MR 1357411

[14] Jean Ginibre; Giorgio Velo Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., Tome 144 (1992) no. 1, pp. 163-188 | MR 1151250

[15] Alexander Grigorʼyan Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geom., Tome 45 (1997) no. 1, pp. 33-52 http://projecteuclid.org/euclid.jdg/1214459753 | MR 1443330

[16] Andrew Hassell; Terence Tao; Jared Wunsch Sharp Strichartz estimates on nontrapping asymptotically conic manifolds, Amer. J. Math., Tome 128 (2006) no. 4, pp. 963-1024 http://muse.jhu.edu/journals/american_journal_of_mathematics/v128/128.4hassell.pdf | MR 2251591

[17] Oana Ivanovici; Gilles Lebeau; Fabrice Planchon Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case, Ann. of Math. (2), Tome 180 (2014) no. 1, pp. 323-380 | Article | MR 3194817

[18] Markus Keel; Terence Tao Endpoint Strichartz estimates, Amer. J. Math., Tome 120 (1998) no. 5, pp. 955-980 http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.5keel.pdf | MR 1646048

[19] Sergiu Klainerman A commuting vectorfields approach to Strichartz-type inequalities and applications to quasi-linear wave equations, Internat. Math. Res. Notices, Tome 2001 (2001) no. 5, pp. 221-274 | Article | MR 1820023

[20] Michael Reed; Barry Simon Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London (1972), xvii+325 pages | MR 0493419

[21] Luc Robbiano; Claude Zuily Strichartz estimates for Schrödinger equations with variable coefficients, Mém. Soc. Math. Fr. (N.S.), Tome 101-102 (2005), vi+208 pages | MR 2193021

[22] Hart F. Smith A parametrix construction for wave equations with C 1,1 coefficients, Ann. Inst. Fourier (Grenoble), Tome 48 (1998) no. 3, pp. 797-835 | MR 1644105

[23] Christopher D. Sogge Lectures on nonlinear wave equations, International Press, Boston, MA, Monographs in Analysis, II (1995), vi+159 pages | MR 1715192

[24] Gigliola Staffilani; Daniel Tataru Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations, Tome 27 (2002) no. 7-8, pp. 1337-1372 | Article | MR 1924470

[25] Robert S. Strichartz Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Tome 44 (1977) no. 3, pp. 705-714 | MR 0512086

[26] Hideo Takaoka; Nikolay Tzvetkov On 2D nonlinear Schrödinger equations with data on ×𝕋, J. Funct. Anal., Tome 182 (2001) no. 2, pp. 427-442 | Article | MR 1828800

[27] Daniel Tataru Outgoing parametrices and global Strichartz estimates for Schrödinger equations with variable coefficients, Phase space analysis of partial differential equations, Birkhäuser Boston, Boston, MA (Progr. Nonlinear Differential Equations Appl.) Tome 69 (2006), pp. 291-313 | Article | MR 2263216