Received:

Revised:

Accepted:

Published online:

DOI: 10.5802/cml.56

Revised:

Accepted:

Published online:

DOI: 10.5802/cml.56

Classification:
35B30, 42B37, 47D03, 47D06

Keywords: dispersive inequalities; Strichartz inequalities; heat semigroup; Schrödinger group; wave operator

Keywords: dispersive inequalities; Strichartz inequalities; heat semigroup; Schrödinger group; wave operator

Author's affiliations:

Valentin Samoyeau ^{1}

License: CC-BY-NC-ND 4.0

Copyrights: The authors retain unrestricted copyrights and publishing rights

@article{CML_2019__11_1_59_0, author = {Valentin Samoyeau}, title = {Strichartz estimates with loss of derivatives under a weak dispersion property for the wave operator}, journal = {Confluentes Mathematici}, pages = {59--78}, publisher = {Institut Camille Jordan}, volume = {11}, number = {1}, year = {2019}, doi = {10.5802/cml.56}, mrnumber = {4002394}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.56/} }

TY - JOUR AU - Valentin Samoyeau TI - Strichartz estimates with loss of derivatives under a weak dispersion property for the wave operator JO - Confluentes Mathematici PY - 2019 SP - 59 EP - 78 VL - 11 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.56/ DO - 10.5802/cml.56 LA - en ID - CML_2019__11_1_59_0 ER -

%0 Journal Article %A Valentin Samoyeau %T Strichartz estimates with loss of derivatives under a weak dispersion property for the wave operator %J Confluentes Mathematici %D 2019 %P 59-78 %V 11 %N 1 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.56/ %R 10.5802/cml.56 %G en %F CML_2019__11_1_59_0

Valentin Samoyeau. Strichartz estimates with loss of derivatives under a weak dispersion property for the wave operator. Confluentes Mathematici, Volume 11 (2019) no. 1, pp. 59-78. doi : 10.5802/cml.56. https://cml.centre-mersenne.org/articles/10.5802/cml.56/

[1] Espaces de Besov et estimations de Strichartz généralisées sur le groupe de Heisenberg, J. Anal. Math., Volume 82 (2000), pp. 93-118 | DOI | MR | Zbl

[2] On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z., Volume 155 (1977) no. 3, pp. 249-276 | DOI | MR | Zbl

[3] Use of abstract Hardy spaces, real interpolation and applications to bilinear operators, Math. Z., Volume 265 (2010) no. 2, pp. 365-400 | DOI | MR | Zbl

[4] Dispersive estimates with loss of derivatives via the heat semigroup and the wave operator, Annali della Scuola Normale Superiore di Pisa, Volume XVII (2017) no. 5, pp. 969-1029 (48 pages) | HAL | Zbl

[5] New abstract Hardy spaces, J. Funct. Anal., Volume 255 (2008) no. 7, pp. 1761-1796 | DOI | MR | Zbl

[6] Strichartz estimates on asymptotically hyperbolic manifolds, Anal. PDE, Volume 4 (2011) no. 1, pp. 1-84 | DOI | MR | Zbl

[7] Strichartz estimates for long range perturbations, Amer. J. Math., Volume 129 (2007) no. 6, pp. 1565-1609 | DOI | MR | Zbl

[8] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993) no. 2, pp. 107-156 | DOI | MR | Zbl

[9] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., Volume 126 (2004) no. 3, pp. 569-605 http://muse.jhu.edu/journals/american_journal_of_mathematics/v126/126.3burq.pdf | DOI | MR | Zbl

[10] Gaussian estimates and ${L}^{p}$-boundedness of Riesz means, J. Evol. Equ., Volume 2 (2002) no. 3, pp. 299-317 | DOI | MR | Zbl

[11] Gaussian heat kernel upper bounds via the Phragmén-Lindelöf theorem, Proc. Lond. Math. Soc. (3), Volume 96 (2008) no. 2, pp. 507-544 | DOI | MR | Zbl

[12] Non-Gaussian aspects of heat kernel behaviour, J. London Math. Soc. (2), Volume 55 (1997) no. 1, pp. 105-125 | DOI | MR | Zbl

[13] Introduction to partial differential equations, Princeton University Press, Princeton, NJ, 1995, xii+324 pages | MR | Zbl

[14] Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., Volume 144 (1992) no. 1, pp. 163-188 | DOI | MR | Zbl

[15] Gaussian upper bounds for the heat kernel on arbitrary manifolds, J. Differential Geom., Volume 45 (1997) no. 1, pp. 33-52 http://projecteuclid.org/euclid.jdg/1214459753 | MR

[16] Sharp Strichartz estimates on nontrapping asymptotically conic manifolds, Amer. J. Math., Volume 128 (2006) no. 4, pp. 963-1024 http://muse.jhu.edu/journals/american_journal_of_mathematics/v128/128.4hassell.pdf | DOI | MR | Zbl

[17] Dispersion for the wave equation inside strictly convex domains I: the Friedlander model case, Ann. of Math. (2), Volume 180 (2014) no. 1, pp. 323-380 | DOI | MR | Zbl

[18] Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998) no. 5, pp. 955-980 http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.5keel.pdf | DOI | MR | Zbl

[19] A commuting vectorfields approach to Strichartz-type inequalities and applications to quasi-linear wave equations, Internat. Math. Res. Notices, Volume 2001 (2001) no. 5, pp. 221-274 | DOI | MR | Zbl

[20] Methods of modern mathematical physics. I. Functional analysis, Academic Press, New York-London, 1972, xvii+325 pages | MR | Zbl

[21] Strichartz estimates for Schrödinger equations with variable coefficients, Mém. Soc. Math. Fr. (N.S.), Volume 101-102 (2005), vi+208 pages | Numdam | MR | Zbl

[22] A parametrix construction for wave equations with ${C}^{1,1}$ coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998) no. 3, pp. 797-835 | DOI | Numdam | MR | Zbl

[23] Lectures on nonlinear wave equations, Monographs in Analysis, II, International Press, Boston, MA, 1995, vi+159 pages | MR | Zbl

[24] Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations, Volume 27 (2002) no. 7-8, pp. 1337-1372 | DOI | MR | Zbl

[25] Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977) no. 3, pp. 705-714 | MR | Zbl

[26] On 2D nonlinear Schrödinger equations with data on $\mathbb{R}\times \mathbb{T}$, J. Funct. Anal., Volume 182 (2001) no. 2, pp. 427-442 | DOI | MR

[27] Outgoing parametrices and global Strichartz estimates for Schrödinger equations with variable coefficients, Phase space analysis of partial differential equations (Progr. Nonlinear Differential Equations Appl.), Volume 69, Birkhäuser Boston, Boston, MA, 2006, pp. 291-313 | DOI | MR | Zbl

*Cited by Sources: *