The Coulomb Branch Formula for Quiver Moduli Spaces
Confluentes Mathematici, Tome 9 (2017) no. 2, pp. 49-69.

In recent series of works, by translating properties of multi-centered supersymmetric black holes into the language of quiver representations, we proposed a formula that expresses the Hodge numbers of the moduli space of semi-stable representations of quivers with generic superpotential in terms of a set of invariants associated to ‘single-centered’ or ‘pure-Higgs’ states. The distinguishing feature of these invariants is that they are independent of the choice of stability condition. Furthermore they are uniquely determined by the χ y -genus of the moduli space. Here, we provide a self-contained summary of the Coulomb branch formula, spelling out mathematical details but leaving out proofs and physical motivations.

Reçu le : 2014-03-10
Révisé le : 2015-09-06
Accepté le : 2015-10-06
Publié le : 2017-12-14
DOI : https://doi.org/10.5802/cml.41
Classification : 16G20,  37P45,  81T60,  83E50
Mots clés: representations of quivers, moduli spaces, quiver quantum mechanics, bound states
@article{CML_2017__9_2_49_0,
     author = {Jan Manschot and Boris Pioline and Ashoke Sen},
     title = {The Coulomb Branch Formula for Quiver Moduli Spaces},
     journal = {Confluentes Mathematici},
     publisher = {Institut Camille Jordan},
     volume = {9},
     number = {2},
     year = {2017},
     pages = {49-69},
     doi = {10.5802/cml.41},
     mrnumber = {3745161},
     zbl = {1392.16015},
     language = {en},
     url = {cml.centre-mersenne.org/item/CML_2017__9_2_49_0/}
}
Jan Manschot; Boris Pioline; Ashoke Sen. The Coulomb Branch Formula for Quiver Moduli Spaces. Confluentes Mathematici, Tome 9 (2017) no. 2, pp. 49-69. doi : 10.5802/cml.41. https://cml.centre-mersenne.org/item/CML_2017__9_2_49_0/

[1] M. R. Douglas and G. W. Moore, D-branes, quivers, and ALE instantons. .

[2] F. Denef, Quantum quivers and Hall / hole halos, J. High En. Phys. 0210:023, 2002. . | Article | MR 1952307

[3] H. Derksen and J. Weyman, Quiver representations, Not. Amer. Math. Soc. 52:200, 2005. | Zbl 1143.16300

[4] M. Reineke, Moduli of representations of quivers, Proc. ICRA XII, Toruń, Poland, August 15–24, 2007. . | Article | Zbl 1206.16009

[5] A. D. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxf. II. Ser. 45:515–530, 1994. | Article | MR 1315461 | Zbl 0837.16005

[6] S. J. Lee, Z. L. Wang and P. Yi, Abelianization of BPS Quivers and the Refined Higgs Index, J. High En. Phys. 1402:047, 2014. . | Article

[7] D. Joyce, Configurations in Abelian categories. IV. Invariants and changing stability conditions, Adv. Math. 217:125-204, 2008. . | Article | MR 2357325 | Zbl 1134.14008

[8] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. . | Article

[9] J. Manschot, B. Pioline, and A. Sen, A Fixed point formula for the index of multi-centered N=2 black holes, J. High En. Phys. 1105:057, 2011. . | Article | MR 2834557 | Zbl 1296.81107

[10] J. Manschot, B. Pioline, and A. Sen, From Black Holes to Quivers, J. High En. Phys. 1211:023, 2012. . | Article | MR 3036499 | Zbl 1397.83075

[11] J. Manschot, B. Pioline, and A. Sen, On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants, J. High En. Phys. 1305:166, 2013. . | Article | MR 3080495 | Zbl 1342.83401

[12] B. Pioline, Corfu lectures on wall-crossing, multi-centered black holes, and quiver invariants, PoS Corfu 2012:085, 2013. . | Article

[13] J. Manschot, Quivers and BPS bound states, Lectures at the Winter School in Mathematical Physics, Les Diablerets, January 12–17, 2014.

[14] J. Manschot, B. Pioline, and A. Sen, Wall Crossing from Boltzmann Black Hole Halos, J. High En. Phys. 1107:059, 2011. . | Article | MR 2875965 | Zbl 1298.81320

[15] J. Manschot, B. Pioline and A. Sen, unpublished. | Article | MR 3036499

[16] F. Denef and G. W. Moore, Split states, entropy enigmas, holes and halos, J. High En. Phys. 1111:129, 2011. . | Article | MR 2913216 | Zbl 1306.81213

[17] S. Mozgovoy, M. Reineke, Abelian quiver invariants and marginal wall-crossing", Lett. Math. Phys. 104495-525, 2014. . | Article | MR 3197003 | Zbl 1342.16011

[18] M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli., Invent. Math. 152(2):349–368, 2003. | Article | MR 1974891 | Zbl 1043.17010

[19] B. Pioline, Four ways across the wall, J. Phys. Conf. Ser. 346:012017, 2012. . | Article

[20] H. Kim, J. Park, Z. Wang and P. Yi, Ab Initio Wall-Crossing, J. High En. Phys. 1109:079, 2011. . | Article | MR 2889856 | Zbl 1301.81225

[21] M. Reineke, J. Stoppa, T. Weist, MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence", Geom. Topol. 16:2097–2134, 2012. . | Article | MR 3033514 | Zbl 1276.14085

[22] A. Sen, Equivalence of Three Wall Crossing Formulae, Comm. Numb. Phys. 6:601–659, 2012. . | Article | Zbl 1349.81143

[23] S.-J. Lee, Z.-L. Wang, and P. Yi, BPS States, Refined Indices, and Quiver Invariants, J. High En. Phys. 1210:094, 2012. . | Article | MR 3033854

[24] I. Bena, M. Berkooz, J. de Boer, S. El-Showk, and D. Van den Bleeken, Scaling BPS Solutions and pure-Higgs States, J. High En. Phys. 1211:171, 2012. . | Article | MR 3036440 | Zbl 1397.81337

[25] S.-J. Lee, Z.-L. Wang, and P. Yi, Quiver Invariants from Intrinsic Higgs States, J. High En. Phys. 1207:169, 2012. . | Article | MR 2967676 | Zbl 1397.83163

[26] J. Manschot, B. Pioline and A. Sen, Generalized quiver mutations and single-centered indices, J. High En. Phys. 1401:050, 2014. . | Article

[27] H. Derksen, J. Weyman, and A. Zelevinsky, Quivers with potentials and their representations. I: Mutations., Sel. Math., New Ser. 14(1):59–119, 2008. | Article | MR 2480710 | Zbl 1204.16008

[28] B. Keller and D. Yang, Derived equivalences from mutations of quivers with potential., Adv. Math. 226(3):2118–2168, 2011. | Article | MR 2739775 | Zbl 1272.13021

[29] S. Mukhopadhyay and K. Ray, Seiberg duality as derived equivalence for some quiver gauge theories, J. High En. Phys. 0402:070, 2004. . | Article

[30] D. Gaiotto, G. W. Moore and A. Neitzke, Framed BPS States, Adv. Theor. Math. Phys. 17:241–397, 2013. . | Article | MR 3250763 | Zbl 1290.81146

[31] C. Córdova and A. Neitzke, Line Defects, Tropicalization, and Multi-Centered Quiver Quantum Mechanics, J. High En. Phys. 1409:099, 2014. . | Article | MR 3267980 | Zbl 1333.81166

[32] C. Córdova and S. H. Shao, An Index Formula for Supersymmetric Quantum Mechanics. . | Article | MR 3562853 | Zbl 1346.81120

[33] K. Hori, H. Kim and P. Yi, Witten Index and Wall Crossing, J. High En. Phys. 1501:124, 2015. . | Article | MR 3313918 | Zbl 1388.81832