In recent series of works, by translating properties of multi-centered supersymmetric black holes into the language of quiver representations, we proposed a formula that expresses the Hodge numbers of the moduli space of semi-stable representations of quivers with generic superpotential in terms of a set of invariants associated to ‘single-centered’ or ‘pure-Higgs’ states. The distinguishing feature of these invariants is that they are independent of the choice of stability condition. Furthermore they are uniquely determined by the -genus of the moduli space. Here, we provide a self-contained summary of the Coulomb branch formula, spelling out mathematical details but leaving out proofs and physical motivations.
Revised:
Accepted:
Published online:
DOI: 10.5802/cml.41
Mots-clés : representations of quivers, moduli spaces, quiver quantum mechanics, bound states
Jan Manschot 1; Boris Pioline 2, 3; Ashoke Sen 4
@article{CML_2017__9_2_49_0, author = {Jan Manschot and Boris Pioline and Ashoke Sen}, title = {The {Coulomb} {Branch} {Formula} for {Quiver} {Moduli} {Spaces}}, journal = {Confluentes Mathematici}, pages = {49--69}, publisher = {Institut Camille Jordan}, volume = {9}, number = {2}, year = {2017}, doi = {10.5802/cml.41}, zbl = {1392.16015}, mrnumber = {3745161}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.41/} }
TY - JOUR AU - Jan Manschot AU - Boris Pioline AU - Ashoke Sen TI - The Coulomb Branch Formula for Quiver Moduli Spaces JO - Confluentes Mathematici PY - 2017 SP - 49 EP - 69 VL - 9 IS - 2 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.41/ DO - 10.5802/cml.41 LA - en ID - CML_2017__9_2_49_0 ER -
%0 Journal Article %A Jan Manschot %A Boris Pioline %A Ashoke Sen %T The Coulomb Branch Formula for Quiver Moduli Spaces %J Confluentes Mathematici %D 2017 %P 49-69 %V 9 %N 2 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.41/ %R 10.5802/cml.41 %G en %F CML_2017__9_2_49_0
Jan Manschot; Boris Pioline; Ashoke Sen. The Coulomb Branch Formula for Quiver Moduli Spaces. Confluentes Mathematici, Volume 9 (2017) no. 2, pp. 49-69. doi : 10.5802/cml.41. https://cml.centre-mersenne.org/articles/10.5802/cml.41/
[1] M. R. Douglas and G. W. Moore, D-branes, quivers, and ALE instantons. arXiv:hep-th/9603167.
[2] F. Denef, Quantum quivers and Hall / hole halos, J. High En. Phys. 0210:023, 2002. arXiv:hep-th/0206072. | DOI | MR
[3] H. Derksen and J. Weyman, Quiver representations, Not. Amer. Math. Soc. 52:200, 2005. | Zbl
[4] M. Reineke, Moduli of representations of quivers, Proc. ICRA XII, Toruń, Poland, August 15–24, 2007. arXiv:0802.2147. | DOI | Zbl
[5] A. D. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxf. II. Ser. 45:515–530, 1994. | DOI | MR | Zbl
[6] S. J. Lee, Z. L. Wang and P. Yi, Abelianization of BPS Quivers and the Refined Higgs Index, J. High En. Phys. 1402:047, 2014. arXiv:1310.1265. | DOI
[7] D. Joyce, Configurations in Abelian categories. IV. Invariants and changing stability conditions, Adv. Math. 217:125-204, 2008. | arXiv | DOI | MR | Zbl
[8] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. | arXiv | DOI
[9] J. Manschot, B. Pioline, and A. Sen, A Fixed point formula for the index of multi-centered N=2 black holes, J. High En. Phys. 1105:057, 2011. arXiv:1103.1887. | DOI | MR | Zbl
[10] J. Manschot, B. Pioline, and A. Sen, From Black Holes to Quivers, J. High En. Phys. 1211:023, 2012. arXiv:1207.2230. | DOI | MR | Zbl
[11] J. Manschot, B. Pioline, and A. Sen, On the Coulomb and Higgs branch formulae for multi-centered black holes and quiver invariants, J. High En. Phys. 1305:166, 2013. arXiv:1302.5498. | DOI | MR | Zbl
[12] B. Pioline, Corfu lectures on wall-crossing, multi-centered black holes, and quiver invariants, PoS Corfu 2012:085, 2013. arXiv:1304.7159. | DOI
[13] J. Manschot, Quivers and BPS bound states, Lectures at the Winter School in Mathematical Physics, Les Diablerets, January 12–17, 2014.
[14] J. Manschot, B. Pioline, and A. Sen, Wall Crossing from Boltzmann Black Hole Halos, J. High En. Phys. 1107:059, 2011. arXiv:1011.1258. | DOI | MR | Zbl
[15] J. Manschot, B. Pioline and A. Sen, unpublished. | DOI | MR
[16] F. Denef and G. W. Moore, Split states, entropy enigmas, holes and halos, J. High En. Phys. 1111:129, 2011. arXiv:hep-th/0702146. | DOI | MR | Zbl
[17] S. Mozgovoy, M. Reineke, Abelian quiver invariants and marginal wall-crossing", Lett. Math. Phys. 104495-525, 2014. arXiv:1212.0410. | DOI | MR | Zbl
[18] M. Reineke, The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli., Invent. Math. 152(2):349–368, 2003. | DOI | MR | Zbl
[19] B. Pioline, Four ways across the wall, J. Phys. Conf. Ser. 346:012017, 2012. arXiv:1103.0261. | DOI
[20] H. Kim, J. Park, Z. Wang and P. Yi, Ab Initio Wall-Crossing, J. High En. Phys. 1109:079, 2011. arXiv:1107.0723. | DOI | MR | Zbl
[21] M. Reineke, J. Stoppa, T. Weist, MPS degeneration formula for quiver moduli and refined GW/Kronecker correspondence", Geom. Topol. 16:2097–2134, 2012. arXiv:1011.1258. | DOI | MR | Zbl
[22] A. Sen, Equivalence of Three Wall Crossing Formulae, Comm. Numb. Phys. 6:601–659, 2012. arXiv:1112.2515. | DOI | Zbl
[23] S.-J. Lee, Z.-L. Wang, and P. Yi, BPS States, Refined Indices, and Quiver Invariants, J. High En. Phys. 1210:094, 2012. arXiv:1207.0821. | DOI | MR
[24] I. Bena, M. Berkooz, J. de Boer, S. El-Showk, and D. Van den Bleeken, Scaling BPS Solutions and pure-Higgs States, J. High En. Phys. 1211:171, 2012. arXiv:1205.5023. | DOI | MR | Zbl
[25] S.-J. Lee, Z.-L. Wang, and P. Yi, Quiver Invariants from Intrinsic Higgs States, J. High En. Phys. 1207:169, 2012. arXiv:1205.6511. | DOI | MR | Zbl
[26] J. Manschot, B. Pioline and A. Sen, Generalized quiver mutations and single-centered indices, J. High En. Phys. 1401:050, 2014. arXiv:1309.7053. | DOI
[27] H. Derksen, J. Weyman, and A. Zelevinsky, Quivers with potentials and their representations. I: Mutations., Sel. Math., New Ser. 14(1):59–119, 2008. | DOI | MR | Zbl
[28] B. Keller and D. Yang, Derived equivalences from mutations of quivers with potential., Adv. Math. 226(3):2118–2168, 2011. | DOI | MR | Zbl
[29] S. Mukhopadhyay and K. Ray, Seiberg duality as derived equivalence for some quiver gauge theories, J. High En. Phys. 0402:070, 2004. arXiv:hep-th/0309191. | DOI
[30] D. Gaiotto, G. W. Moore and A. Neitzke, Framed BPS States, Adv. Theor. Math. Phys. 17:241–397, 2013. arXiv:1006.0146. | DOI | MR | Zbl
[31] C. Córdova and A. Neitzke, Line Defects, Tropicalization, and Multi-Centered Quiver Quantum Mechanics, J. High En. Phys. 1409:099, 2014. arXiv:1308.6829. | DOI | MR | Zbl
[32] C. Córdova and S. H. Shao, An Index Formula for Supersymmetric Quantum Mechanics. arXiv:1406.7853. | DOI | MR | Zbl
[33] K. Hori, H. Kim and P. Yi, Witten Index and Wall Crossing, J. High En. Phys. 1501:124, 2015. arXiv:1407.2567. | DOI | MR | Zbl
Cited by Sources: