This paper summarizes our rather lengthy paper, “Algebra of the Infrared: String Field Theoretic Structures in Massive Field Theory In Two Dimensions,” and is meant to be an informal, yet detailed, introduction and summary of that larger work.
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/cml.40
Keywords: Fukaya-Seidel category, supersymmetric quantum mechanics, two-dimensional field theory, soliton, wall-crossing
Davide Gaiotto 1; Gregory W. Moore 2; Edward Witten 3
@article{CML_2017__9_2_5_0, author = {Davide Gaiotto and Gregory W. Moore and Edward Witten}, title = {An {Introduction} to the {Web-Based} {Formalism}}, journal = {Confluentes Mathematici}, pages = {5--48}, publisher = {Institut Camille Jordan}, volume = {9}, number = {2}, year = {2017}, doi = {10.5802/cml.40}, zbl = {1397.81241}, mrnumber = {3745160}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.40/} }
TY - JOUR AU - Davide Gaiotto AU - Gregory W. Moore AU - Edward Witten TI - An Introduction to the Web-Based Formalism JO - Confluentes Mathematici PY - 2017 SP - 5 EP - 48 VL - 9 IS - 2 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.40/ DO - 10.5802/cml.40 LA - en ID - CML_2017__9_2_5_0 ER -
%0 Journal Article %A Davide Gaiotto %A Gregory W. Moore %A Edward Witten %T An Introduction to the Web-Based Formalism %J Confluentes Mathematici %D 2017 %P 5-48 %V 9 %N 2 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.40/ %R 10.5802/cml.40 %G en %F CML_2017__9_2_5_0
Davide Gaiotto; Gregory W. Moore; Edward Witten. An Introduction to the Web-Based Formalism. Confluentes Mathematici, Volume 9 (2017) no. 2, pp. 5-48. doi : 10.5802/cml.40. https://cml.centre-mersenne.org/articles/10.5802/cml.40/
[1] S. M. Carroll, S. Hellerman and M. Trodden, Domain wall junctions are 1/4 - BPS states, Phys. Rev. D 61:065001, 2000. arXiv:hep-th/9905217. | DOI | MR
[2] S. Cecotti, P. Fendley, K. A. Intriligator and C. Vafa, A New supersymmetric index, Nucl. Phys. B 386:405, 1992. arXiv:hep-th/9204102. | DOI | MR
[3] S. Cecotti and C. Vafa, On classification of supersymmetric theories, Commun. Math. Phys. 158:569, 1993. arXiv:hep-th/9211097. | DOI | Zbl
[4] F. Chapoton and M. Livernet, Pre-Lie Algebras and the Rooted Trees Operad, Intl. Math. Res. Notices 8:395–408, 2001. | DOI | Zbl
[5] H. Fan, T. J. Jarvis and Y. Ruan, The Witten equation, mirror symmetry and quantum singularity theory. arXiv:math.AG/0712.4021. | DOI | MR | Zbl
[6] P. Fendley and K. A. Intriligator, Scattering and thermodynamics in integrable N=2 theories, Nucl. Phys. B 380:265, 1992. arXiv:hep-th/9202011. | DOI | MR
[7] D. Gaiotto and E. Witten, Knot Invariants from Four-Dimensional Gauge Theory. arXiv:hep-th/1106.4789. | DOI | MR | Zbl
[8] D. Gaiotto, G. W. Moore and A. Neitzke, Spectral networks. arXiv:hep-th/1204.4824. | DOI | MR | Zbl
[9] D. Gaiotto, G. W. Moore and E. Witten, Algebra of the Infrared: String Field Theoretic Structures in Massive Field Theory In Two Dimensions. arXiv:hep-th/1506.04087.
[10] G. W. Gibbons and P. K. Townsend, A Bogomolny equation for intersecting domain walls, Phys. Rev. Lett. 83:1727, 1999. arXiv:hep-th/9905196. | DOI
[11] A. Haydys, Seidel-Fukaya Category And Gauge Theory. arXiv:1010.2353. | DOI | MR | Zbl
[12] M. Kapranov, M. Kontsevich and Y. Soibelman, Algebra of the infrared and secondary polytopes. arXiv:math.SG/1408.2673. | DOI | MR | Zbl
[13] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations. arXiv:math.AG/0811.2435. | DOI | Zbl
[14] H. Oda, K. Ito, M. Naganuma and N. Sakai, An Exact solution of BPS domain wall junction, Phys. Lett. B 471, 140, 1999. doi:10.1016/S0370-2693(99)01355-6, arXiv:hep-th/9910095. | DOI | MR | Zbl
[15] P. Seidel, Fukaya categories and Picard-Lefschetz theory, European Mathematical Society, Zürich, 2008 | DOI | Zbl
[16] E. Witten, Supersymmetry and Morse theory, J. Diff. Geom. 17:661, 1982. | DOI | MR | Zbl
[17] E. Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, in Topological methods in modern mathematics, Stony Brook, NY, 1991, Publish or Perish, Houston, TX, 1993, pages 235–269. | Zbl
[18] E. Witten, Fivebranes and Knots. arXiv:hep-th/1101.3216. | DOI | MR | Zbl
[19] E. Witten, Khovanov Homology And Gauge Theory, arXiv:math.GT/1108.3103. | DOI | Zbl
[20] E. Witten, Two Lectures On The Jones Polynomial And Khovanov Homology. arXiv: math.GT/1401.6996. | DOI | Zbl
Cited by Sources: