Abstract Excision and 1 -Homology
Confluentes Mathematici, Tome 15 (2023), pp. 107-136.

We use the abstract setting of excisive functors in the language of -categories to show that the best approximation to the 1 -homology functor by an excisive functor is trivial.

Then we make an effort to explain the used language on a conceptual level for those who do not feel at home with -categories, prove that the singular chain complex functor is indeed excisive in the abstract sense, and show how the latter leads to classical excision statements in the form of Mayer–Vietoris sequences.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.95
Classification : 55N35, 55U35, 18F50, 18N60
Mots clés : $\ell ^1$-homology, excision, excisive approximation, $\infty $-categories

Johannes Witzig 1

1 Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
Licence : CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2023__15__107_0,
     author = {Johannes Witzig},
     title = {Abstract {Excision} and $\ell ^1${-Homology}},
     journal = {Confluentes Mathematici},
     pages = {107--136},
     publisher = {Institut Camille Jordan},
     volume = {15},
     year = {2023},
     doi = {10.5802/cml.95},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.95/}
}
TY  - JOUR
AU  - Johannes Witzig
TI  - Abstract Excision and $\ell ^1$-Homology
JO  - Confluentes Mathematici
PY  - 2023
SP  - 107
EP  - 136
VL  - 15
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.95/
DO  - 10.5802/cml.95
LA  - en
ID  - CML_2023__15__107_0
ER  - 
%0 Journal Article
%A Johannes Witzig
%T Abstract Excision and $\ell ^1$-Homology
%J Confluentes Mathematici
%D 2023
%P 107-136
%V 15
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.95/
%R 10.5802/cml.95
%G en
%F CML_2023__15__107_0
Johannes Witzig. Abstract Excision and $\ell ^1$-Homology. Confluentes Mathematici, Tome 15 (2023), pp. 107-136. doi : 10.5802/cml.95. https://cml.centre-mersenne.org/articles/10.5802/cml.95/

[1] Jiří Adámek; Horst Herrlich; George E. Strecker Abstract and Concrete Categories. The Joy of Cats, John Wiley & Sons, 1990 (addendum: Most recent version can be found here: http://katmat.math.uni-bremen.de/acc/) | Zbl

[2] C. Barwick; D. M. Kan Relative categories: Another model for the homotopy theory of homotopy theories, Indag. Math., New Ser., Volume 23 (2012) no. 1–2, pp. 42-68 | DOI | Zbl

[3] Julia E. Bergner A survey of (,1)-categories, Towards Higher Categories (IMA Volumes in Mathematics and its Applications), Volume 152, Springer, 2010, pp. 69-83 | DOI | Zbl

[4] Julia E. Bergner The Homotopy Theory of (,1)-Categories, London Mathematical Society Student Texts, 90, Cambridge University Press, 2018 | DOI | Zbl

[5] J. M. Boardman; R. M. Vogt Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, 347, Springer, 1973 | DOI | Zbl

[6] Denis-Charles Cisinski Higher Categories and Homotopical Algebra, Cambridge Studies in Advanced Mathematics, 180, Cambridge University Press, 2019 (addendum: Last version and errata available at http://www.mathematik.uni-regensburg.de/cisinski/publikationen.html) | DOI | Zbl

[7] Daniel Dugger; David I. Spivak Mapping spaces in quasi-categories, Algebr. Geom. Topol., Volume 11 (2011) no. 1, pp. 263-325 | DOI | Zbl

[8] Daniel Dugger; David I. Spivak Rigidification of quasi-categories, Algebr. Geom. Topol., Volume 11 (2011) no. 1, pp. 225-261 | DOI | Zbl

[9] W. G. Dwyer; D. M. Kan Calculating simplicial localizations, J. Pure Appl. Algebra, Volume 18 (1980) no. 1, pp. 17-35 | DOI | Zbl

[10] W. G. Dwyer; D. M. Kan Function complexes in homotopical algebra, Topology, Volume 19 (1980) no. 4, pp. 427-440 | DOI | Zbl

[11] W. G. Dwyer; D. M. Kan Simplicial localizations of categories, J. Pure Appl. Algebra, Volume 17 (1980) no. 3, pp. 267-284 | DOI | Zbl

[12] Greg Friedman Survey article: An elementary illustrated introduction to simplicial sets, Rocky Mt. J. Math., Volume 42 (2012) no. 2, pp. 353-423 | DOI | Zbl

[13] Paul G. Goerss; John F. Jardine Simplicial Homotopy Theory, Modern Birkhäuser Classics, Birkhäuser, 2010 | Zbl

[14] Michael Gromov Volume and bounded cohomology, Publ. Math., Inst. Hautes Étud. Sci., Volume 56 (1982), pp. 5-99 | Numdam | Zbl

[15] Moritz Groth A short course on -categories (2015) (https://arxiv.org/abs/1007.2925)

[16] Allen E. Hatcher Algebraic Topology, Cambridge University Press, 2002 (https://www.math.cornell.edu/~hatcher/AT/ATpage.html) | Zbl

[17] Philip S. Hirschhorn Model Categories and Their Localizations, Mathematical Surveys and Monographs, 99, American Mathematical Society, 2003 | Zbl

[18] Mark Hovey Model Categories, Mathematical Surveys and Monographs, American Mathematical Society, 1999 | DOI

[19] Nikolai V. Ivanov Notes on the bounded cohomology theory (2017) (https://arxiv.org/abs/1708.05150)

[20] André Joyal Quasi-categories and Kan complexes, J. Pure Appl. Algebra, Volume 175 (2002) no. 1, pp. 207-222 | DOI | Zbl

[21] André Joyal Notes on Quasi-Categories, 2008 (http://www.math.uchicago.edu/~may/IMA/Joyal.pdf)

[22] Clara Löh Simplicial Volume (Manifold Atlas Project, http://www.map.mpim-bonn.mpg.de/Simplicial_volume)

[23] Clara Löh 1 -Homology and Simplicial Volume, Ph. D. Thesis, WWU Münster (2007) addendum: available at http://nbn-resolving.de/urn:nbn:de:hbz:6-37549578216 or (with errata) at https://loeh.app.uni-regensburg.de/preprints/

[24] Clara Löh Isomorphisms in 1 -homology, Münster J. Math., Volume 1 (2008), pp. 237-265 | Zbl

[25] Zhen Lin Low Universes for category theory (2013) (https://arxiv.org/abs/1304.5227)

[26] Jacob Lurie Kerodon (https://kerodon.net, an online resource for homotopy-coherent mathematics)

[27] Jacob Lurie Higher Topos Theory, Annals of Mathematics Studies, 170, Princeton University Press, 2009 (addendum: Most recent version can be found here: https://www.math.ias.edu/~lurie/) | DOI | Zbl

[28] Jacob Lurie Higher Algebra, 2017 (https://www.math.ias.edu/~lurie/)

[29] Saunders Mac Lane Categories for the Working Mathematician, Graduate Texts in Mathematics, 5, Springer, 1998 | Zbl

[30] J. P. May; K. Ponto More Concise Algebraic Topology, Chicago Lectures in Mathematics, University of Chicago Press, 2012 | Zbl

[31] Nicolas Monod An invitation to bounded cohomology, Proceedings of the International Congress of Mathematicians (ICM). Vol. II, EMS Publishing House, 2006, pp. 1183-1211 (https://egg.epfl.ch/~nmonod/articles/icm.html) | Zbl

[32] Brian A. Munson; Ismar Volić Cubical Homotopy Theory, New Mathematical Monographs, 25, Cambridge University Press, 2015 | DOI | Zbl

[33] nLab authors nLab (https://ncatlab.org/nlab/show/HomePage, A Wiki for collaborative work on Mathematics, Physics, and Philosophy)

[34] George Raptis Bounded cohomology and homotopy colimits (2021) (https://arxiv.org/abs/2103.15614)

[35] Emily Riehl Homotopical categories: from model categories to (,1)-categories, Stable categories and structured ring spectra (Mathematical Sciences Research Institute Publications), Volume 69, Cambridge University Press, 2022, pp. 5-74 | Zbl

[36] Emily Riehl Homotopy coherent structures, Expositions in Theory and Applications of Categories (2023) no. 1, pp. 1-31

[37] Emily Riehl; Dominic Verity The theory and practice of Reedy categories, Theory Appl. Categ., Volume 29 (2014), pp. 256-301 | Zbl

[38] Michael A. Shulman Set theory for category theory (2008) (https://arxiv.org/abs/0810.1279)

[39] Robert M. Switzer Algebraic Topology – Homotopy and Homology, Classics in Mathematics, Springer, 2002 (Reprint of the 1975 original) | Zbl

[40] Tammo tom Dieck Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society, 2008 (addendum: Errata at https://www.uni-math.gwdg.de/tammo/algtop.html) | DOI | Zbl

[41] Rainer M. Vogt Homotopy limits and colimits, Math. Z., Volume 134 (1973), pp. 11-52 | DOI | Zbl

[42] Charles A. Weibel An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1995 (addendum: Errata at https://sites.math.rutgers.edu/~weibel/Hbook-corrections.html)

[43] Johannes Witzig Universality and Examples in the Context of Functorial Semi-Norms, Ph. D. Thesis, University of Regensburg (2023) (https://epub.uni-regensburg.de/54396)

Cité par Sources :