We use the abstract setting of excisive functors in the language of -categories to show that the best approximation to the -homology functor by an excisive functor is trivial.
Then we make an effort to explain the used language on a conceptual level for those who do not feel at home with -categories, prove that the singular chain complex functor is indeed excisive in the abstract sense, and show how the latter leads to classical excision statements in the form of Mayer–Vietoris sequences.
Révisé le :
Accepté le :
Publié le :
Mots clés : $\ell ^1$-homology, excision, excisive approximation, $\infty $-categories
Johannes Witzig 1
@article{CML_2023__15__107_0, author = {Johannes Witzig}, title = {Abstract {Excision} and $\ell ^1${-Homology}}, journal = {Confluentes Mathematici}, pages = {107--136}, publisher = {Institut Camille Jordan}, volume = {15}, year = {2023}, doi = {10.5802/cml.95}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.95/} }
Johannes Witzig. Abstract Excision and $\ell ^1$-Homology. Confluentes Mathematici, Tome 15 (2023), pp. 107-136. doi : 10.5802/cml.95. https://cml.centre-mersenne.org/articles/10.5802/cml.95/
[1] Abstract and Concrete Categories. The Joy of Cats, John Wiley & Sons, 1990 (addendum: Most recent version can be found here: http://katmat.math.uni-bremen.de/acc/) | Zbl
[2] Relative categories: Another model for the homotopy theory of homotopy theories, Indag. Math., New Ser., Volume 23 (2012) no. 1–2, pp. 42-68 | DOI | Zbl
[3] A survey of -categories, Towards Higher Categories (IMA Volumes in Mathematics and its Applications), Volume 152, Springer, 2010, pp. 69-83 | DOI | Zbl
[4] The Homotopy Theory of -Categories, London Mathematical Society Student Texts, 90, Cambridge University Press, 2018 | DOI | Zbl
[5] Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Mathematics, 347, Springer, 1973 | DOI | Zbl
[6] Higher Categories and Homotopical Algebra, Cambridge Studies in Advanced Mathematics, 180, Cambridge University Press, 2019 (addendum: Last version and errata available at http://www.mathematik.uni-regensburg.de/cisinski/publikationen.html) | DOI | Zbl
[7] Mapping spaces in quasi-categories, Algebr. Geom. Topol., Volume 11 (2011) no. 1, pp. 263-325 | DOI | Zbl
[8] Rigidification of quasi-categories, Algebr. Geom. Topol., Volume 11 (2011) no. 1, pp. 225-261 | DOI | Zbl
[9] Calculating simplicial localizations, J. Pure Appl. Algebra, Volume 18 (1980) no. 1, pp. 17-35 | DOI | Zbl
[10] Function complexes in homotopical algebra, Topology, Volume 19 (1980) no. 4, pp. 427-440 | DOI | Zbl
[11] Simplicial localizations of categories, J. Pure Appl. Algebra, Volume 17 (1980) no. 3, pp. 267-284 | DOI | Zbl
[12] Survey article: An elementary illustrated introduction to simplicial sets, Rocky Mt. J. Math., Volume 42 (2012) no. 2, pp. 353-423 | DOI | Zbl
[13] Simplicial Homotopy Theory, Modern Birkhäuser Classics, Birkhäuser, 2010 | Zbl
[14] Volume and bounded cohomology, Publ. Math., Inst. Hautes Étud. Sci., Volume 56 (1982), pp. 5-99 | Numdam | Zbl
[15] A short course on -categories (2015) (https://arxiv.org/abs/1007.2925)
[16] Algebraic Topology, Cambridge University Press, 2002 (https://www.math.cornell.edu/~hatcher/AT/ATpage.html) | Zbl
[17] Model Categories and Their Localizations, Mathematical Surveys and Monographs, 99, American Mathematical Society, 2003 | Zbl
[18] Model Categories, Mathematical Surveys and Monographs, American Mathematical Society, 1999 | DOI
[19] Notes on the bounded cohomology theory (2017) (https://arxiv.org/abs/1708.05150)
[20] Quasi-categories and Kan complexes, J. Pure Appl. Algebra, Volume 175 (2002) no. 1, pp. 207-222 | DOI | Zbl
[21] Notes on Quasi-Categories, 2008 (http://www.math.uchicago.edu/~may/IMA/Joyal.pdf)
[22] Simplicial Volume (Manifold Atlas Project, http://www.map.mpim-bonn.mpg.de/Simplicial_volume)
[23] -Homology and Simplicial Volume, Ph. D. Thesis, WWU Münster (2007) addendum: available at http://nbn-resolving.de/urn:nbn:de:hbz:6-37549578216 or (with errata) at https://loeh.app.uni-regensburg.de/preprints/
[24] Isomorphisms in -homology, Münster J. Math., Volume 1 (2008), pp. 237-265 | Zbl
[25] Universes for category theory (2013) (https://arxiv.org/abs/1304.5227)
[26] Kerodon (https://kerodon.net, an online resource for homotopy-coherent mathematics)
[27] Higher Topos Theory, Annals of Mathematics Studies, 170, Princeton University Press, 2009 (addendum: Most recent version can be found here: https://www.math.ias.edu/~lurie/) | DOI | Zbl
[28] Higher Algebra, 2017 (https://www.math.ias.edu/~lurie/)
[29] Categories for the Working Mathematician, Graduate Texts in Mathematics, 5, Springer, 1998 | Zbl
[30] More Concise Algebraic Topology, Chicago Lectures in Mathematics, University of Chicago Press, 2012 | Zbl
[31] An invitation to bounded cohomology, Proceedings of the International Congress of Mathematicians (ICM). Vol. II, EMS Publishing House, 2006, pp. 1183-1211 (https://egg.epfl.ch/~nmonod/articles/icm.html) | Zbl
[32] Cubical Homotopy Theory, New Mathematical Monographs, 25, Cambridge University Press, 2015 | DOI | Zbl
[33] nLab (https://ncatlab.org/nlab/show/HomePage, A Wiki for collaborative work on Mathematics, Physics, and Philosophy)
[34] Bounded cohomology and homotopy colimits (2021) (https://arxiv.org/abs/2103.15614)
[35] Homotopical categories: from model categories to -categories, Stable categories and structured ring spectra (Mathematical Sciences Research Institute Publications), Volume 69, Cambridge University Press, 2022, pp. 5-74 | Zbl
[36] Homotopy coherent structures, Expositions in Theory and Applications of Categories (2023) no. 1, pp. 1-31
[37] The theory and practice of Reedy categories, Theory Appl. Categ., Volume 29 (2014), pp. 256-301 | Zbl
[38] Set theory for category theory (2008) (https://arxiv.org/abs/0810.1279)
[39] Algebraic Topology – Homotopy and Homology, Classics in Mathematics, Springer, 2002 (Reprint of the 1975 original) | Zbl
[40] Algebraic topology, EMS Textbooks in Mathematics, European Mathematical Society, 2008 (addendum: Errata at https://www.uni-math.gwdg.de/tammo/algtop.html) | DOI | Zbl
[41] Homotopy limits and colimits, Math. Z., Volume 134 (1973), pp. 11-52 | DOI | Zbl
[42] An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1995 (addendum: Errata at https://sites.math.rutgers.edu/~weibel/Hbook-corrections.html)
[43] Universality and Examples in the Context of Functorial Semi-Norms, Ph. D. Thesis, University of Regensburg (2023) (https://epub.uni-regensburg.de/54396)
Cité par Sources :