In this article, we first try to make the known analogy between convexity and plurisubharmonicity more precise. Then we introduce a notion of strict plurisubharmonicity analogous to strict convexity, and we show how this notion can be used to study the strong maximum modulus principle in Banach spaces. As an application, we define a notion of direct integral of a family of Banach spaces, which includes at once Bochner spaces, direct sums and Hilbert direct integrals, and we show that under suitable hypotheses, when , an direct integral satisfies the strong maximum modulus principle if and only if almost all members of the family do. This statement can be considered as a rewording of several known results, but the notion of strict plurisubharmonicity yields a new proof of it, which has the advantage of being short, enlightening and unified.
Revised:
Accepted:
Published online:
Keywords: convexity, plurisubharmonicity, strong maximum modulus principle, Banach spaces, direct integrals
Anne-Edgar Wilke 1
@article{CML_2023__15__83_0, author = {Anne-Edgar Wilke}, title = {Convexity, plurisubharmonicity and the strong maximum modulus principle in {Banach} spaces}, journal = {Confluentes Mathematici}, pages = {83--106}, publisher = {Institut Camille Jordan}, volume = {15}, year = {2023}, doi = {10.5802/cml.93}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.93/} }
TY - JOUR AU - Anne-Edgar Wilke TI - Convexity, plurisubharmonicity and the strong maximum modulus principle in Banach spaces JO - Confluentes Mathematici PY - 2023 SP - 83 EP - 106 VL - 15 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.93/ DO - 10.5802/cml.93 LA - en ID - CML_2023__15__83_0 ER -
%0 Journal Article %A Anne-Edgar Wilke %T Convexity, plurisubharmonicity and the strong maximum modulus principle in Banach spaces %J Confluentes Mathematici %D 2023 %P 83-106 %V 15 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.93/ %R 10.5802/cml.93 %G en %F CML_2023__15__83_0
Anne-Edgar Wilke. Convexity, plurisubharmonicity and the strong maximum modulus principle in Banach spaces. Confluentes Mathematici, Volume 15 (2023), pp. 83-106. doi : 10.5802/cml.93. https://cml.centre-mersenne.org/articles/10.5802/cml.93/
[1] Variétés différentielles et analytiques (Fascicule de résultats). Paragraphes 1 à 7, Actualités Scientifiques et Industrielles, 1333, Hermann, 1967 | DOI | Zbl
[2] Topologie générale. Chapitres 5 à 10, Hermann, 1974 | DOI | Zbl
[3] Espaces vectoriels topologiques. Chapitres 1 à 5, Masson, 1981 | DOI | Zbl
[4] Complex convexity, Trans. Am. Math. Soc., Volume 82 (1956), pp. 17-51 | DOI | MR | Zbl
[5] Strict complex convexity, Proc. Am. Math. Soc., Volume 57 (2041) no. 2, pp. 285-290 | DOI | MR | Zbl
[6] Measure theory, Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser/Springer, 2013 | DOI | MR | Zbl
[7] Reflexive Banach spaces not isomorphic to uniformly convex spaces, Bull. Am. Math. Soc., Volume 47 (1941) no. 4, pp. 313-317 | DOI | MR | Zbl
[8] Strict convexity and smoothness of normed spaces, Trans. Am. Math. Soc., Volume 78 (1955), pp. 516-528 | DOI | MR | Zbl
[9] Disintegration of positive isometric group representations on -spaces, Positivity, Volume 21 (2017) no. 2, pp. 673-710 | DOI | MR | Zbl
[10] Vector measures, Mathematical Surveys, 15, American Mathematical Society, 1977 | DOI | Zbl
[11] Complex convexity and the geometry of Banach spaces, Math. Proc. Camb. Philos. Soc., Volume 99 (1986) no. 3, pp. 495-506 | DOI | MR | Zbl
[12] Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné, Ann. Inst. Fourier, Volume 16 (1966) no. 1, pp. 1-95 | DOI | Numdam | Zbl
[13] Geometric measure theory, Grundlehren der Mathematischen Wissenschaften, 153, Springer, 2010 | DOI | Zbl
[14] On complex strict and uniform convexity, Proc. Am. Math. Soc., Volume 47 (2040) no. 1, 10.2307/2040227 pages | DOI | MR | Zbl
[15] Randomly normed spaces, Travaux en Cours, 41, Hermann, 1991 | Zbl
[16] Notions of convexity, Progress in Mathematics, 127, Birkhäuser, 1994 | DOI | Zbl
[17] Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 63, Springer, 2016 | DOI | Zbl
[18] On complex strictly convex spaces. I, J. Math. Anal. Appl., Volume 70 (1979) no. 2, pp. 423-429 | DOI | MR | Zbl
[19] Complex strict convexity of certain Banach spaces, Monatsh. Math., Volume 99 (1985) no. 3, pp. 199-211 | DOI | MR | Zbl
[20] Les fonctions plurisousharmoniques, Ann. Sci. Éc. Norm. Supér., Volume 62 (1945) no. 4, pp. 301-338 | DOI | Numdam | MR | Zbl
[21] Fonctions plurisousharmoniques dans les espaces vectoriels topologiques, Séminaire Pierre Lelong (Analyse). Année 1967-1968 (Lecture Notes in Mathematics), Volume 71, Springer, 1967, pp. 167-190 | DOI | Zbl
[22] Induced representations of locally compact groups. I, Ann. Math., Volume 55 (1952), pp. 101-139 | DOI | MR | Zbl
[23] Direct integral theory, Lecture Notes in Pure and Applied Mathematics, 61, Marcel Dekker, 1980 | DOI | MR | Zbl
[24] Sur les fonctions analytiques de plusieurs variables. VI. Domaines pseudoconvexes, Tôhoku Math. J., Volume 49 (1942), pp. 15-52 | MR | Zbl
[25] The strong maximum modulus theorem for analytic functions into a Banach space, Proc. Am. Math. Soc., Volume 18 (2035) no. 4, pp. 640-646 | DOI | MR | Zbl
Cited by Sources: