The role of the Hilbert metric in a class of singular elliptic boundary value problems in convex domains
Confluentes Mathematici, Volume 9 (2017) no. 1, pp. 105-117.

In a recent paper [7], we were led to consider a distance over a bounded open convex domain. It turns out to be the so-called Thompson metric, which is equivalent to the Hilbert metric. It plays a key role in the analysis of existence and uniqueness of solutions to a class of elliptic boundary-value problems that are singular at the boundary.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/cml.38
Classification: 35J75, 52A99
Mots-clés : Elliptic PDEs, convex domain, Hilbert metric, singular BVP

Denis Serre 1

1 UMPA, UMR 5669, École Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon Cedex 07, France
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CML_2017__9_1_105_0,
     author = {Denis Serre},
     title = {The role of the {Hilbert} metric in a class of  singular elliptic boundary value problems in convex domains},
     journal = {Confluentes Mathematici},
     pages = {105--117},
     publisher = {Institut Camille Jordan},
     volume = {9},
     number = {1},
     year = {2017},
     doi = {10.5802/cml.38},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.38/}
}
TY  - JOUR
AU  - Denis Serre
TI  - The role of the Hilbert metric in a class of  singular elliptic boundary value problems in convex domains
JO  - Confluentes Mathematici
PY  - 2017
SP  - 105
EP  - 117
VL  - 9
IS  - 1
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.38/
DO  - 10.5802/cml.38
LA  - en
ID  - CML_2017__9_1_105_0
ER  - 
%0 Journal Article
%A Denis Serre
%T The role of the Hilbert metric in a class of  singular elliptic boundary value problems in convex domains
%J Confluentes Mathematici
%D 2017
%P 105-117
%V 9
%N 1
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.38/
%R 10.5802/cml.38
%G en
%F CML_2017__9_1_105_0
Denis Serre. The role of the Hilbert metric in a class of  singular elliptic boundary value problems in convex domains. Confluentes Mathematici, Volume 9 (2017) no. 1, pp. 105-117. doi : 10.5802/cml.38. https://cml.centre-mersenne.org/articles/10.5802/cml.38/

[1] M. T. Anderson. Complete minimal varieties in hyperbolic space. Inventiones mathematicae, 69:477–494, 1982.

[2] D. Gilbarg, N. Trudinger. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer-Verlag, Heidelberg, 2001.

[3] D. Hilbert. Ueber die gerade Linie als kürzeste Verbindung zweier Punkte. Mathematische Annalen, 46:91–96, 1895.

[4] Fang Hua Lin. On the Dirichlet problem for minimal graphs. Inventiones mathematicae, 96:593–612, 1989.

[5] L. Marquis. Géométrie de Hilbert. Images des Mathématiques, CNRS (2015). http://images.math.cnrs.fr/Geometrie-de-Hilbert.html.

[6] D. Serre. Multi-dimensional shock interaction for a Chaplygin gas. Arch. Rational Mech. Anal., 191:539–577, 2009.

[7] D. Serre. Gradient estimate in terms of a Hilbert-like distance, for minimal surfaces and Chaplygin gas. Comm. Partial Diff. Equ., 41:774–784, 2016.

[8] C. Walsh. Gauge-reversing maps on cones, and Hilbert and Thompson isometries. Preprint arXiv:1312.7871 [math.MG] (December 2013).

Cited by Sources: