In a recent paper [7], we were led to consider a distance over a bounded open convex domain. It turns out to be the so-called Thompson metric, which is equivalent to the Hilbert metric. It plays a key role in the analysis of existence and uniqueness of solutions to a class of elliptic boundary-value problems that are singular at the boundary.
Revised:
Accepted:
Published online:
Mots-clés : Elliptic PDEs, convex domain, Hilbert metric, singular BVP
Denis Serre 1
@article{CML_2017__9_1_105_0, author = {Denis Serre}, title = {The role of the {Hilbert} metric in a class of singular elliptic boundary value problems in convex domains}, journal = {Confluentes Mathematici}, pages = {105--117}, publisher = {Institut Camille Jordan}, volume = {9}, number = {1}, year = {2017}, doi = {10.5802/cml.38}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.38/} }
TY - JOUR AU - Denis Serre TI - The role of the Hilbert metric in a class of singular elliptic boundary value problems in convex domains JO - Confluentes Mathematici PY - 2017 SP - 105 EP - 117 VL - 9 IS - 1 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.38/ DO - 10.5802/cml.38 LA - en ID - CML_2017__9_1_105_0 ER -
%0 Journal Article %A Denis Serre %T The role of the Hilbert metric in a class of singular elliptic boundary value problems in convex domains %J Confluentes Mathematici %D 2017 %P 105-117 %V 9 %N 1 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.38/ %R 10.5802/cml.38 %G en %F CML_2017__9_1_105_0
Denis Serre. The role of the Hilbert metric in a class of singular elliptic boundary value problems in convex domains. Confluentes Mathematici, Volume 9 (2017) no. 1, pp. 105-117. doi : 10.5802/cml.38. https://cml.centre-mersenne.org/articles/10.5802/cml.38/
[1] M. T. Anderson. Complete minimal varieties in hyperbolic space. Inventiones mathematicae, 69:477–494, 1982.
[2] D. Gilbarg, N. Trudinger. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer-Verlag, Heidelberg, 2001.
[3] D. Hilbert. Ueber die gerade Linie als kürzeste Verbindung zweier Punkte. Mathematische Annalen, 46:91–96, 1895.
[4] Fang Hua Lin. On the Dirichlet problem for minimal graphs. Inventiones mathematicae, 96:593–612, 1989.
[5] L. Marquis. Géométrie de Hilbert. Images des Mathématiques, CNRS (2015). http://images.math.cnrs.fr/Geometrie-de-Hilbert.html.
[6] D. Serre. Multi-dimensional shock interaction for a Chaplygin gas. Arch. Rational Mech. Anal., 191:539–577, 2009.
[7] D. Serre. Gradient estimate in terms of a Hilbert-like distance, for minimal surfaces and Chaplygin gas. Comm. Partial Diff. Equ., 41:774–784, 2016.
[8] C. Walsh. Gauge-reversing maps on cones, and Hilbert and Thompson isometries. Preprint arXiv:1312.7871 [math.MG] (December 2013).
Cited by Sources: