Seeds of sunflowers are often modelled by leading to a roughly uniform repartition with seeds indexed by consecutive integers at angular distance for the golden ratio. We associate to such a map a geodesic path of the modular curve and use it for local descriptions of the image of the phyllotactic map .
Mots-clés : Lattice, hyperbolic geometry, phyllotaxis, sunflower-map
Roland Bacher 1
@article{CML_2014__6_1_3_0, author = {Roland Bacher}, title = {On geodesics of phyllotaxis}, journal = {Confluentes Mathematici}, pages = {3--27}, publisher = {Institut Camille Jordan}, volume = {6}, number = {1}, year = {2014}, doi = {10.5802/cml.10}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.10/} }
Roland Bacher. On geodesics of phyllotaxis. Confluentes Mathematici, Volume 6 (2014) no. 1, pp. 3-27. doi : 10.5802/cml.10. https://cml.centre-mersenne.org/articles/10.5802/cml.10/
[1] J.W. Anderson. Hyperbolic Geometry, Springer, 2005. | MR | Zbl
[2] L. and A. Bravais. Essai sur la disposition des feuilles curvisériées, Ann. Sci. Naturelles (2), 7:42–110, 1837.
[3] H.S.M. Coxeter. The role of intermediate convergents in Tait’s explanation for phyllotaxis, J. of Alg., 20:167–175, 1972. | MR | Zbl
[4] G.H. Hardy, E.M. Wright. An Introduction to the Theory of Numbers, Oxford University Press, 1960 (fourth edition). | Zbl
[5] G. van Iterson. Mathematische und mikroskopisch-anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen, Gustav Fischer, Jena, 1907.
[6] R.V. Jean, D. Barabé (editors). Symmetry in Plants, Series in Mathematical Biology and Medecine, vol. 4, World Scientific, 1998. | Zbl
[7] A. Ya. Khinchin. Continued fractions, The University of Chicago Press, Chicago, 1964. | MR | Zbl
[8] L.S. Levitov. Energetic Approach to Phyllotaxis, Europhys. Lett., 6:533–539, 1991.
[9] Mathoverflow: http://mathoverflow.net/questions/3307/can-a-discrete-set-of-the-plane-of-uniform-density-intersect-all-large-triangles.
[10] R.V. Jean, D. Barabé (editors). Symmetry in plants, World Sci. Publishing, River Edge, NJ, 1998. | Zbl
[11] F. Rothen, A.-J. Koch. Phyllotaxis, or the properties of spiral lattices. I Shape invariance under compression, J. Phys. France, 50:633–657, 1989. | MR
[12] J-F. Sadoc, J. Charvolin, N. Rivier. Phyllotaxis: a non conventional solution to packing efficiency in situations with radial symmetry, Acta Cryst. A, 68:470–483, 2012.
[13] C. Series. The Geometry of Markoff Numbers, Math. Int., 7(3):20–29, 1985. | MR | Zbl
[14] J-P. Serre. Cours d’arithmétique, Presses Universitaires de France, 1970. | MR | Zbl
[15] D.W. Thompson. On Growth and Form, Dover reprint (1992) of second ed. (1942) (first ed. 1917). | Zbl
[16] H. Vogel. A better way to construct the sunflower head, Math. Biosc., 44:179–189, 1979.
Cited by Sources: