On geodesics of phyllotaxis
Confluentes Mathematici, Volume 6 (2014) no. 1, pp. 3-27.

Seeds of sunflowers are often modelled by nϕ θ (n)=ne 2iπnθ leading to a roughly uniform repartition with seeds indexed by consecutive integers at angular distance 2πθ for θ the golden ratio. We associate to such a map ϕ θ a geodesic path γ θ : >0 PSL 2 () of the modular curve and use it for local descriptions of the image ϕ θ () of the phyllotactic map ϕ θ .

DOI: 10.5802/cml.10
Classification: 92B99, 11H31, 52C15
Mots-clés : Lattice, hyperbolic geometry, phyllotaxis, sunflower-map

Roland Bacher 1

1 Université Grenoble Alpes, Institut Fourier (CNRS UMR 5582), 38000 Grenoble, France
@article{CML_2014__6_1_3_0,
     author = {Roland Bacher},
     title = {On geodesics of phyllotaxis},
     journal = {Confluentes Mathematici},
     pages = {3--27},
     publisher = {Institut Camille Jordan},
     volume = {6},
     number = {1},
     year = {2014},
     doi = {10.5802/cml.10},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.10/}
}
TY  - JOUR
AU  - Roland Bacher
TI  - On geodesics of phyllotaxis
JO  - Confluentes Mathematici
PY  - 2014
SP  - 3
EP  - 27
VL  - 6
IS  - 1
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.10/
DO  - 10.5802/cml.10
LA  - en
ID  - CML_2014__6_1_3_0
ER  - 
%0 Journal Article
%A Roland Bacher
%T On geodesics of phyllotaxis
%J Confluentes Mathematici
%D 2014
%P 3-27
%V 6
%N 1
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.10/
%R 10.5802/cml.10
%G en
%F CML_2014__6_1_3_0
Roland Bacher. On geodesics of phyllotaxis. Confluentes Mathematici, Volume 6 (2014) no. 1, pp. 3-27. doi : 10.5802/cml.10. https://cml.centre-mersenne.org/articles/10.5802/cml.10/

[1] J.W. Anderson. Hyperbolic Geometry, Springer, 2005. | MR | Zbl

[2] L. and A. Bravais. Essai sur la disposition des feuilles curvisériées, Ann. Sci. Naturelles (2), 7:42–110, 1837.

[3] H.S.M. Coxeter. The role of intermediate convergents in Tait’s explanation for phyllotaxis, J. of Alg., 20:167–175, 1972. | MR | Zbl

[4] G.H. Hardy, E.M. Wright. An Introduction to the Theory of Numbers, Oxford University Press, 1960 (fourth edition). | Zbl

[5] G. van Iterson. Mathematische und mikroskopisch-anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen, Gustav Fischer, Jena, 1907.

[6] R.V. Jean, D. Barabé (editors). Symmetry in Plants, Series in Mathematical Biology and Medecine, vol. 4, World Scientific, 1998. | Zbl

[7] A. Ya. Khinchin. Continued fractions, The University of Chicago Press, Chicago, 1964. | MR | Zbl

[8] L.S. Levitov. Energetic Approach to Phyllotaxis, Europhys. Lett., 6:533–539, 1991.

[9] Mathoverflow: http://mathoverflow.net/questions/3307/can-a-discrete-set-of-the-plane-of-uniform-density-intersect-all-large-triangles.

[10] R.V. Jean, D. Barabé (editors). Symmetry in plants, World Sci. Publishing, River Edge, NJ, 1998. | Zbl

[11] F. Rothen, A.-J. Koch. Phyllotaxis, or the properties of spiral lattices. I Shape invariance under compression, J. Phys. France, 50:633–657, 1989. | MR

[12] J-F. Sadoc, J. Charvolin, N. Rivier. Phyllotaxis: a non conventional solution to packing efficiency in situations with radial symmetry, Acta Cryst. A, 68:470–483, 2012.

[13] C. Series. The Geometry of Markoff Numbers, Math. Int., 7(3):20–29, 1985. | MR | Zbl

[14] J-P. Serre. Cours d’arithmétique, Presses Universitaires de France, 1970. | MR | Zbl

[15] D.W. Thompson. On Growth and Form, Dover reprint (1992) of second ed. (1942) (first ed. 1917). | Zbl

[16] H. Vogel. A better way to construct the sunflower head, Math. Biosc., 44:179–189, 1979.

Cited by Sources: