We study the relationship between the existence of nonprincipal ultrafilters over ω and the failure of the automatic continuity, Steinhaus and Bergman properties for infinite products of finite groups.
Simon Thomas 1 ; Jindřich Zapletal 1
@article{CML_2012__4_2_A2_0, author = {Simon Thomas and Jind\v{r}ich Zapletal}, title = {On the {Steinhaus} and {Bergman} properties for infinite products of finite groups}, journal = {Confluentes Mathematici}, publisher = {World Scientific Publishing Co Pte Ltd}, volume = {4}, number = {2}, year = {2012}, doi = {10.1142/S1793744212500028}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.1142/S1793744212500028/} }
TY - JOUR AU - Simon Thomas AU - Jindřich Zapletal TI - On the Steinhaus and Bergman properties for infinite products of finite groups JO - Confluentes Mathematici PY - 2012 VL - 4 IS - 2 PB - World Scientific Publishing Co Pte Ltd UR - https://cml.centre-mersenne.org/articles/10.1142/S1793744212500028/ DO - 10.1142/S1793744212500028 LA - en ID - CML_2012__4_2_A2_0 ER -
%0 Journal Article %A Simon Thomas %A Jindřich Zapletal %T On the Steinhaus and Bergman properties for infinite products of finite groups %J Confluentes Mathematici %D 2012 %V 4 %N 2 %I World Scientific Publishing Co Pte Ltd %U https://cml.centre-mersenne.org/articles/10.1142/S1793744212500028/ %R 10.1142/S1793744212500028 %G en %F CML_2012__4_2_A2_0
Simon Thomas; Jindřich Zapletal. On the Steinhaus and Bergman properties for infinite products of finite groups. Confluentes Mathematici, Tome 4 (2012) no. 2. doi : 10.1142/S1793744212500028. https://cml.centre-mersenne.org/articles/10.1142/S1793744212500028/
[1] L. Babai, N. Nikolov and L. Pyber, Product growth and mixing in finite groups, in Proc. 19th Annual ACM–SIAM Symposium on Discrete Algorithms (ACM–SIAM, 2008), pp. 248–257.
[2] G. M. Bergman, Generating infinite symmetric groups, Bull. London Math. Soc. 38 (2006) 429–440.
[3] P. J. Cameron, Permutation Groups (Cambridge Univ. Press, 1999).
[4] C. Chevalley, Introduction to the Theory of Algebraic Functions of One Variable (Amer. Math. Soc., 1951).
[5] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras (Wiley, 1962).
[6] Y. de Cornulier, Strongly bounded groups and infinite powers of finite groups, Comm. Alg. 34 (2006) 2337–2345.
[7] C. A. Di Prisco and S. Todorcevic, Perfect set properties in L(R)[U], Adv. Math. 139 (1998) 240–259.
[8] C. A. Di Prisco and S. Todorcevic, Souslin partitions of products of finite sets, Adv. Math. 176 (2003) 145–173.
[9] M. Droste and W. C. Holland, Generating automorphism groups of chains, Forum Math. 17 (2005) 699–710.
[10] E. W. Ellers, N. Gordeev and M. Herzog, Covering numbers for Chevalley groups, Israel J. Math. 111 (1999) 339–372.
[11] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, Vol. 34 (Amer. Math. Soc., 2001).
[12] J. E. Humphreys, Representations of SL(2, p), Amer. Math. Mon. 82 (1975) 21–39.
[13] A. Ivanov, Strongly bounded automorphism groups, Colloq. Math. 105 (2006) 57–67.
[14] G. D. James, On the minimal dimensions of irreducible representations of symmetric groups, Math. Proc. Cambridge Philos. Soc. 94 (1983) 417–424.
[15] T. Jech, Set Theory. The Third Millennium Edition, Revised and Expanded (Springer- Verlag, 2003).
[16] A. S. Kechris and C. Rosendal, Turbulence, amalgamation, and generic automor- phisms of homogeneous structures, Proc. Lond. Math. Soc. 94 (2007) 302–350.
[17] J. Kittrell and T. Tsankov, Topological properties of full groups, Ergodic Theory Dynam. Systems 30 (2010) 525–545.
[18] S. Koppelberg and J. Tits, Une propriété des produits directs infinis de groupes finis isomorphes, C. R. Math. Acad. Sci. Paris, Sér. A 279 (1974) 583–585.
[19] S. Lang, Algebra, 2nd edn. (Addison-Wesley, 1984).
[20] P. B. Larson, The Stationary Tower, Univ. Lecture Ser., Vol. 32 (Amer. Math. Soc., 2004).
[21] H. D. Macpherson and P. M. Neumann, Subgroups of infinite symmetric groups, J. London Math. Soc. 42 (1990) 64–84.
[22] A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977) 59–111.
[23] Y. N. Moschovakis, Descriptive Set Theory, 2nd edn., Mathematical Surveys and Monographs, Vol. 155 (Amer. Math. Soc., 2009).
[24] I. Neeman and J. Zapletal, Proper forcing and L(R), J. Symbolic Logic 66 (2001) 801–810.
[25] C. Rosendal and S. Solecki, Automatic continuity of homomorphisms and fixed points on metric compacta, Israel J. Math. 162 (2007) 349–371.
[26] C. Rosendal, Automatic continuity of group homomorphisms, Bull. Symbolic Logic 15 (2009) 184–214.
[27] J. Saxl, S. Shelah and S. Thomas, Infinite products of finite simple groups, Trans. Amer. Math. Soc. 348 (1996) 4611–4641.
[28] S. Shelah, On the cardinality of ultraproduct of finite sets, J. Symbolic Logic 35 (1970) 83–84.
[29] S. Shelah, Proper and Improper Forcing, 2nd edn. (Springer-Verlag, 1998).
[30] S. Shelah and J. Zapletal, Ramsey theorems for products of finite sets with submea- sures, Combinatorica 31 (2011) 225–244.
[31] S. Thomas, Infinite products of finite simple groups II, J. Group Theory 2 (1999) 401–434.
[32] P. H. Tiep and A. E. Zalesskii, Minimal characters of the finite classical groups, Comm. Algebra 24 (1996) 2093–2167.
[33] A. Wagner, The faithful linear representation of least degree of Sn and An over a field of characteristic 2, Math. Z. 151 (1976) 127–137.
[34] A. Wagner, The faithful linear representation of least degree of Sn and An over a field of odd characteristic, Math. Z. 154 (1977) 103–114.
[35] J. Zapletal, Forcing Idealized, Cambridge Tracts in Mathematics, Vol. 174 (Cambridge Univ. Press, 2008).
Cité par Sources :