Equivariant cohomology and current algebras
Confluentes Mathematici, Volume 4 (2012) no. 2.

This paper touches upon two big themes, equivariant cohomology and current algebras. Our first main result is as follows: we define a pair of current algebra functor which assigns Lie algebras (current algebras) CA(M,A) and SA(M,A) to a manifold M and a differential graded Lie algebra (DGLA) A. The functors  CA and SA are contravariant with respect to M and covariant with respect to A. If A = C𝔤, the cone of a Lie algebra 𝔤 spanned by Lie derivatives L(x) and contractions I(x)(x ∈ 𝔤) and satisfying the Cartan's magic formula [d, I(x)] = L(x), the corresponding current algebras coincide, and they are equal to CA(M,Cg)=SA(M,Cg)C(M,g), the space of smooth 𝔤-valued functions on M with the pointwise Lie bracket. Other examples include affine Lie algebras on the circle and Faddeev–Mickelsson–Shatashvili (FMS) extensions of higher-dimensional current algebras. The second set of results is related to the construction of a new DGLA D𝔤 assigned to a Lie algebra 𝔤. It is generated by L(x) and I(x) (similar to C𝔤) and by higher contractions I(x2), I(x3) etc. Similar to C𝔤, D𝔤 can be used in building differential models of equivariant cohomology. In particular, twisted equivariant cohomology (including twists by 3-cocycles and higher odd cocycles) finds a natural place in this new framework. The DGLA D𝔤 admits a family of central extensions Dp𝔤 parametrized by homogeneous invariant polynomials p(Sg)g. There is a Lie homomorphism from CA(M,Dpg) to the FMS current algebra defined by p. Let G be a Lie group integrating the Lie algebra 𝔤. The current algebras SA(M,Dg) and SA(M,Dpg) integrate to groups DG(M) and DpG(M). As a topological application, we consider principal G-bundles, and for every homogeneous polynomial p(Sg)g we pose a lifting problem (defined in terms of DG(M) and DpG(M)) with the only obstruction the Chern–Weil class cw(p). When M is a sphere, we study integration of the current algebra CA(M,Dpg). It turns out that the corresponding group is a central extension of DG(M). Under certain conditions on the polynomial p, this is a central extension by a circle.

Published online:
DOI: 10.1142/S1793744212500016
Anton Alekseev 1; Pavol Ševera 1

1
@article{CML_2012__4_2_A1_0,
     author = {Anton Alekseev and Pavol \v{S}evera},
     title = {Equivariant cohomology and current algebras},
     journal = {Confluentes Mathematici},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {4},
     number = {2},
     year = {2012},
     doi = {10.1142/S1793744212500016},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.1142/S1793744212500016/}
}
TY  - JOUR
AU  - Anton Alekseev
AU  - Pavol Ševera
TI  - Equivariant cohomology and current algebras
JO  - Confluentes Mathematici
PY  - 2012
VL  - 4
IS  - 2
PB  - World Scientific Publishing Co Pte Ltd
UR  - https://cml.centre-mersenne.org/articles/10.1142/S1793744212500016/
DO  - 10.1142/S1793744212500016
LA  - en
ID  - CML_2012__4_2_A1_0
ER  - 
%0 Journal Article
%A Anton Alekseev
%A Pavol Ševera
%T Equivariant cohomology and current algebras
%J Confluentes Mathematici
%D 2012
%V 4
%N 2
%I World Scientific Publishing Co Pte Ltd
%U https://cml.centre-mersenne.org/articles/10.1142/S1793744212500016/
%R 10.1142/S1793744212500016
%G en
%F CML_2012__4_2_A1_0
Anton Alekseev; Pavol Ševera. Equivariant cohomology and current algebras. Confluentes Mathematici, Volume 4 (2012) no. 2. doi : 10.1142/S1793744212500016. https://cml.centre-mersenne.org/articles/10.1142/S1793744212500016/

[1] A. Alekseev and E. Meinrenken, The non-commutative Weil algebra, Invent. Math. 139 (2000) 135–172.

[2] H. Cartan, Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, in Colloque de topologie (espaces fibrés) (Bruxelles, 1950), pp. 15–27 (in French).

[3] H. Cartan, La transgression dans un groupe de Lie et dans un espace fibré principal, in Colloque de topologie (espaces fibrés) (Bruxelles, 1950), pp. 57–71 (in French).

[4] M. Cederwall, G. Ferretti, B. E. W. Nilsson and A. Westerberg, Higher-dimensional loop algebras, non-abelian extensions and p-branes, Nucl. Phys. B 424 (1994) 97.

[5] V. Drinfeld, Quasi-Hopf algebras, Algebra i Analiz 1 (1989) 114–148.

[6] L. Faddeev, Operator anomaly for the Gauss law, Phys. Lett. B 145 (1984) 81–84.

[7] L. Faddeev and S. Shatashvili, Algebraic and Hamiltonian methods in the theory of nonabelian anomalies, Teoret. Mat. Fiz. 60 (1984) 206–217 (in Russian).

[8] V. Ginzburg and M. Kapranov, Koszul duality for operads, Duke Math. J. 76 (1994) 203–272.

[9] V. Guillemin and S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Mathematics Past and Present (Springer, 1999).

[10] S. Hu and B. Uribe, Extended manifolds and extended equivariant cohomology, J. Geom. Phys. 59 (2009) 104–131.

[11] Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras, Ann. Inst. Fourier (Grenoble) 46 (1996) 1241–1272.

[12] A. Losev, G. Moore, N. Nekrasov and S. Shatashvili, Central extensions of gauge groups revisited, Selecta Math. 4 (1998) 117–123.

[13] J. Mickelsson, Chiral anomalies in even and odd dimensions, Commun. Math. Phys. 97 (1985) 361–370.

[14] J. Mickelsson, Current Algebras and Groups (Plenum Press, 1989).

[15] C. Vizman, The path group construction of Lie group extensions, J. Geom. Phys. 58 (2008) 860–873.

Cited by Sources: