On bialgebras and Hopf algebras of oriented graphs
Confluentes Mathematici, Volume 4 (2012) no. 1.

We define two coproducts for cycle-free oriented graphs, thus building up two commutative connected graded Hopf algebras, such that one is a comodule-coalgebra on the other, thus generalizing the result obtained in [2] for Hopf algebras of rooted trees.

Published online:
DOI: 10.1142/S1793744212400038
Dominique Manchon 1

1
@article{CML_2012__4_1_A4_0,
     author = {Dominique Manchon},
     title = {On bialgebras and {Hopf} algebras of oriented graphs},
     journal = {Confluentes Mathematici},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {4},
     number = {1},
     year = {2012},
     doi = {10.1142/S1793744212400038},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.1142/S1793744212400038/}
}
TY  - JOUR
AU  - Dominique Manchon
TI  - On bialgebras and Hopf algebras of oriented graphs
JO  - Confluentes Mathematici
PY  - 2012
VL  - 4
IS  - 1
PB  - World Scientific Publishing Co Pte Ltd
UR  - https://cml.centre-mersenne.org/articles/10.1142/S1793744212400038/
DO  - 10.1142/S1793744212400038
LA  - en
ID  - CML_2012__4_1_A4_0
ER  - 
%0 Journal Article
%A Dominique Manchon
%T On bialgebras and Hopf algebras of oriented graphs
%J Confluentes Mathematici
%D 2012
%V 4
%N 1
%I World Scientific Publishing Co Pte Ltd
%U https://cml.centre-mersenne.org/articles/10.1142/S1793744212400038/
%R 10.1142/S1793744212400038
%G en
%F CML_2012__4_1_A4_0
Dominique Manchon. On bialgebras and Hopf algebras of oriented graphs. Confluentes Mathematici, Volume 4 (2012) no. 1. doi : 10.1142/S1793744212400038. https://cml.centre-mersenne.org/articles/10.1142/S1793744212400038/

[1] Ch. Brouder, Runge–Kutta methods and renormalization, Euro. Phys. J. C 12 (2000) 512–534.

[2] D. Calaque, K. Ebrahimi-Fard and D. Manchon, Two interacting Hopf algebras of trees, Adv. Appl. Math. 47 (2011) 282–308.

[3] Ph. Chartier, E. Hairer and G. Vilmart, Numerical integrators based on modified differential equations, Math. Comp. 76 (2007) 1941–1953.

[4] A. Connes and D. Kreimer, Hopf algebras, renormalization and noncommutative geometry, Commun. Math. Phys. 199 (1998) 203–242.

[5] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann–Hilbert problem I: The Hopf algebra structure of graphs and the main theorem, Commun. Math. Phys. 210 (2000) 249–273.

[6] A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann–Hilbert problem. II. The β-function, diffeomorphisms and the renormal- ization group, Commun. Math. Phys. 216 (2001) 215–241.

[7] L. Foissy, Les algèbres de Hopf des arbres enracinés décorés I, II, Bull. Sci. Math. 126 (2002) 193–239, 249–288.

[8] D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys. 2 (1998) 303–334.

[9] J.-L. Loday and M. Ronco, Combinatorial Hopf algebras, in Quantum of Maths, Clay Math. Proc., Vol. 11 (Amer. Math. Soc., 2010), pp. 347–383.

[10] D. Manchon and A. Sa¨ıdi, Lois pré-Lie en interaction, Comm. Alg. 39 (2011) 3662– 3680.

[11] A. Murua, The Hopf algebra of rooted trees, free Lie algebras, and Lie series, Found. Comput. Math. 6 (2006) 387–426.

Cited by Sources: