Sur les origines du cocycle de Virasoro
Confluentes Mathematici, Volume 2 (2010) no. 3, pp. 313-332.

This paper gives a short sketch of the origins of Virasoro cocycle, both in algebra and quantum field theory.

Cet article retrace un bref historique des origines du cocycle de Virasoro, en algèbre et en théorie quantique des champs.

Published online:
DOI: 10.1142/S1793744210000211
Claude Roger 1

1
@article{CML_2010__2_3_313_0,
     author = {Claude Roger},
     title = {Sur les origines du cocycle de {Virasoro}},
     journal = {Confluentes Mathematici},
     pages = {313--332},
     publisher = {World Scientific Publishing Co Pte Ltd},
     volume = {2},
     number = {3},
     year = {2010},
     doi = {10.1142/S1793744210000211},
     language = {fr},
     url = {https://cml.centre-mersenne.org/articles/10.1142/S1793744210000211/}
}
TY  - JOUR
AU  - Claude Roger
TI  - Sur les origines du cocycle de Virasoro
JO  - Confluentes Mathematici
PY  - 2010
SP  - 313
EP  - 332
VL  - 2
IS  - 3
PB  - World Scientific Publishing Co Pte Ltd
UR  - https://cml.centre-mersenne.org/articles/10.1142/S1793744210000211/
DO  - 10.1142/S1793744210000211
LA  - fr
ID  - CML_2010__2_3_313_0
ER  - 
%0 Journal Article
%A Claude Roger
%T Sur les origines du cocycle de Virasoro
%J Confluentes Mathematici
%D 2010
%P 313-332
%V 2
%N 3
%I World Scientific Publishing Co Pte Ltd
%U https://cml.centre-mersenne.org/articles/10.1142/S1793744210000211/
%R 10.1142/S1793744210000211
%G fr
%F CML_2010__2_3_313_0
Claude Roger. Sur les origines du cocycle de Virasoro. Confluentes Mathematici, Volume 2 (2010) no. 3, pp. 313-332. doi : 10.1142/S1793744210000211. https://cml.centre-mersenne.org/articles/10.1142/S1793744210000211/

[1] C. Adam, C. Ekstrand and T. Sýkora, Phys. Rev. D 62, 105033 (2000), DOI : 10.1103/PhysRevD.62.105033.

[2] S. L. Adler and W. A. Bardeen, Phys. Rev. 182, 1517 (1969), DOI : 10.1103/PhysRev.182.1517.

[3] F. A. Berezin, The Method of Second Quantization, translated from the Russian by N. Mugibayashi and A. Jeffrey, Pure and Applied Physics, Vol. 24 (Academic Press, 1966) .

[4] S. Bloch, Algebraic K-theory, Evanston 1980, Lecture Notes in Math 854 (Proc. Conf., Northwestern Univ., Springer, Evanston, IL, 1980) pp. 1–23.

[5] H. W. J. Blöte, J. Cardy and M. Nightingale, Phys. Rev. Lett. 56, 742 (1986), DOI : 10.1103/PhysRevLett.56.742.

[6] M. J. Bowick and S. G. Rajeev, The complex geometry of string theory and loop space, Proc. of the Johns Hopkins Workshop on Current Problems in Particle Theory, 11, Frontiers in Particle Theory (World Scientific, 1988) pp. 101–144.

[7] R. C. Brower and C. B. Thorn, Nucl. Phys. B 31, 163 (1971), DOI : 10.1016/0550-3213(71)90452-4.

[8] É. Cartan, C. R. Acad. Sci. Paris T 187, 196 (1928).

[9] H. Cartan and S. Eilenberg , Homological Algebra ( Princeton Univ. Press , 1956 ) .

[10] H. Casimir, Nederl. Akad. Wetensch. Proc. Ser. B 51, 793 (1948).

[11] H.-J. Chang, Abh. Math. Sem. Hansischen Univ. 14, 151 (1941), DOI : 10.1007/BF02940743.

[12] C. Chevalley and S. Eilenberg, Trans. Amer. Math. Soc. 63, 85 (1948).

[13] A. Connes , Géométrie Non Commutative ( InterEditions , 1990 ) .

[14] A. Connes , Noncommutative Geometry ( Academic Press , 1994 ) .

[15] L. A. Dickey , Soliton Equations and Hamiltonian Systems , 2nd edn. , Advanced Series in Mathematical Physics 26 ( World Scientific , 2003 ) .

[16] L. D. Faddeev, Phys. Lett. B 145, 81 (1984).

[17] B. L. Feĭgin, Selecta Math. Soviet. 7, 49 (1988).

[18] B. L. Feĭgin and B. L. Tsygan, K-theory, Arithmetic and Geometry, Lecture Notes in Math 1289 (Springer, Moscow, 1987) pp. 67–209.

[19] P. H. Frampton , Dual Resonance Models and Superstrings ( World Scientific , 1986 ) .

[20] K. O. Friedrichs , Mathematical Aspects of the Quantum Theory of Fields ( Interscience , 1953 ) .

[21] S. Fubini and G. Veneziano, Ann. Phys. 63, 12 (1971).

[22] A. Galli, Nuovo Cimento A 69, 275 (1970), DOI : 10.1007/BF02754122.

[23] I. M. Gelfand and D. B. Fuks, Funkcional. Anal. i Priložen. 2, 92 (1968).

[24] M. B. Green , J. H. Schwarz and E. Witten , Superstring Theory , 2nd edn. , Cambridge Monographs on Mathematical Physics 1 ( Cambridge Univ. Press , 1988 ) .

[25] L. Guieu and C. Roger , L’algèbre et le Groupe de Virasoro, Aspects Géométriques et Algébriques, Généralisations ( Les Publications , 2007 ) .

[26] P. J. Hilton and U. Stammbach , A Course in Homological Algebra , 2nd edn. , Graduate Texts in Mathematics 4 ( Springer-Verlag , 1997 ) .

[27] H. Hopf, Comment. Math. Helv. 14, 257 (1942), DOI : 10.1007/BF02565622.

[28] C. Itzykson and J.-M. Drouffe , Statistical Field Theory , Cambridge Monographs on Mathematical Physics 2 ( Cambridge Univ. Press ) .

[29] V. G. Kac and A. K. Raina , Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras , Advanced Series in Mathematical Physics 2 ( World Scientific , 1987 ) .

[30] V. G. Kac , Infinite-Dimensional Lie Algebras , 3rd edn. ( Cambridge Univ. Press , 1990 ) .

[31] C. Kassel and J.-L. Loday, Ann. Inst. Fourier (Grenoble) 32, 119 (1983).

[32] M. A. Kervaire, Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham (Springer, 1970) pp. 212–225.

[33] J.-L. Koszul, Bull. Soc. Math. France 78, 65 (1950).

[34] D. Leites, J. Prime Res. Math. 3, 101 (2007).

[35] J. Lepowsky, Ann. Sci. École Norm. Sup. 12, 169 (1979).

[36] J.-L. Loday , Cyclic Homology , Grundlehren der Mathematischen Wissenschaften 301 ( Springer-Verlag , 1992 ) .

[37] O. Mathieu, Invent. Math. 108, 455 (1992), DOI : 10.1007/BF02100615.

[38] J. Mickelsson , Current Algebras and Groups , Plenum Monographs in Nonlinear Physics ( Plenum Press , 1989 ) .

[39] J. Milnor , Introduction to Algebraic K-Theory , Annals of Mathematics Studies ( Princeton Univ. Press , 1971 ) .

[40] R. V. Moody, Canad. J. Math. 21, 1432 (1969).

[41] Y. Ne’eman and Y. Kirsh , Les Chasseurs de Particules ( Editions Odile , 1999 ) .

[42] Y. A. Neretin , Categories of Symmetries and Infinite-Dimensional Groups , London Mathematical Society Monographs 16 ( The Clarendon Press Oxford Univ. Press , 1996 ) .

[43] A. Neveu and J. H. Schwarz, Nucl. Phys. B 31, 86 (1971), DOI : 10.1016/0550-3213(71)90448-2.

[44] M. E. Peskin and D. V. Schroeder , An Introduction to Quantum Field Theory , ed. D. Pines ( Addison-Wesley , 1995 ) .

[45] A. Pressley and G. Segal , Loop Groups ( The Clarendon Press Oxford Univ. Press , 1986 ) .

[46] P. Ramond, Lett. Nuovo Cimento 4, 422 (1972), DOI : 10.1007/BF02824424.

[47] C. Roger, Gazette des Mathématiciens (2006) pp. 23–30.

[48] I. Schur, J. Reine Angew. Math. 127, 20 (1904).

[49] J. Schwinger , Selected Papers (1937–1976) of Julian Schwinger , Mathematical Physics and Applied Mathematics 4 , eds. M. Flato , C. Fronsdal and K. A. Milton ( D. Reidel , 1979 ) .

[50] J. Schwinger, Phys. Rev. 82, 664 (1951), DOI : 10.1103/PhysRev.82.664.

[51] J. Schwinger, Phys. Rev. Lett. 3, 296 (1959), DOI : 10.1103/PhysRevLett.3.296.

[52] I. M. Singer, Astérisque, The mathematical heritage of Élie Cartan (Lyon, 1985) pp. 323–340.

[53] M. J. Sparnaay, Physica 24, 751 (1958), DOI : 10.1016/S0031-8914(58)80090-7.

[54] R. Stora, Progress in Gauge Field Theory (Cargèse, 1983), NATO Adv. Sci. Inst. Ser. B Phys 115, ed. (Plenum, 1984) pp. 543–562.

[55] R. F. Streater and A. S. Wightman , PCT, Spin and Statistics, and all that , 2nd edn. , Mathematical Physics Monograph Series ( Benjamin/Cummings , 1978 ) .

[56] J. Tate, Ann. Sci. École Norm. Sup. 1, 149 (1968).

[57] M. A. Virasoro, Phys. Rev. D 1, 2933 (1970), DOI : 10.1103/PhysRevD.1.2933.

[58] M. A. Virasoro, String Theory and Fundamental Interactions, Lecture Notes in Phys 737 (Springer, 2008) pp. 137–144.

[59] E. Witt, Mitt. Math. Gesellsch. Hamburg 10, 311 (1976).

[60] A. Zee , Quantum Field Theory in a Nutshell ( Princeton Univ. Press , 2003 ) .

[61] B. Zwiebach , A First Course in String Theory , 2nd edn. ( Cambridge Univ. Press , 2009 ) .

Cited by Sources: