On the solutions of the universal differential equation with three regular singularities (On solutions of KZ 3 )
Confluentes Mathematici, Volume 11 (2019) no. 2, p. 25-64

This review concerns the resolution of a special case of Knizhnik-Zamolodchikov equations (KZ 3 ) and our recent results on combinatorial aspects of zeta functions on several variables.

In particular, we describe the action of the differential Galois group of KZ 3 on the asymptotic expansions of its solutions leading to a group of associators which contains the unique Drinfel’d associator (or Drinfel’d series). Non trivial expressions of an associator with rational coefficients are also explicitly provided, based on the algebraic structure and the singularity analysis of the multi-indexed polylogarithms and harmonic sums.

Received : 2017-05-02
Revised : 2019-03-02
Accepted : 2019-03-16
Published online : 2020-03-09
DOI : https://doi.org/10.5802/cml.59
Classification:  05E16,  11M32,  16T05,  20F10,  33F10,  44A20
Keywords: Algebraic Basis, Combinatorial Hopf Algebra, Harmonic Sum, Polylogarithm, Polyzeta
@article{CML_2019__11_2_25_0,
     author = {Vincel Hoang Ngoc Minh},
     title = {On the solutions of the universal differential equation with three regular singularities (On solutions of $KZ\_3$)},
     journal = {Confluentes Mathematici},
     publisher = {Institut Camille Jordan},
     volume = {11},
     number = {2},
     year = {2019},
     pages = {25-64},
     doi = {10.5802/cml.59},
     language = {en},
     url={cml.centre-mersenne.org/item/CML_2019__11_2_25_0/}
}
Vincel Hoang Ngoc Minh. On the solutions of the universal differential equation with three regular singularities (On solutions of $KZ_3$). Confluentes Mathematici, Volume 11 (2019) no. 2, pp. 25-64. doi : 10.5802/cml.59. https://cml.centre-mersenne.org/item/CML_2019__11_2_25_0/

[1] J. Berstel, C. Reutenauer. Rational series and their languages, Springer Verlag, 1988. | Zbl 0668.68005

[2] M. Bigotte. Etude symbolique et algorithmique des fonctions polylogarithmes et des nombres d’Euler-Zagier colorés, Ph. D., Lille, 2000.

[3] V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh. Schützenberger’s factorization on the (completed) Hopf algebra of q-stuffle product, Journal of Algebra, Number Theory and Applications, pp. 191-215, 30, No. 2, 2013. | Zbl 1292.05267

[4] V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh, L. Kane, C. Tollu. Dual bases for non commutative symmetric and quasi-symmetric functions via monoidal factorization, dans Journal of Symbolic Computation (2015). | Article | MR 3451331 | Zbl 1351.68315

[5] V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh. Structure of Polyzetas and Explicit Representation on Transcendence Bases of Shuffle and Stuffle Algebras, Journal of Symbolic Computation, 83, pp. 93-111 (2017). | Article | MR 3645646 | Zbl 1371.16042

[6] V.C. Bui, G.H.E. Duchamp, N. Hoang, V. Hoang Ngoc Minh, C. Tollu. Combinatorics on the φ-deformed stuffle product, arXiv:1302.5391.

[7] V.C. Bui, G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo, C. Tollu. (Pure) transcendence bases in ϕ-deformed shuffle bialgebras, Journal Electronique du Séminaire Lotharingien de Combinatoire, 74 (2018). | MR 3865613 | Zbl 1396.05119

[8] N. Bourbaki. Topologie générale, Springer (1974) | Zbl 0337.54001

[9] P. Cartier. Jacobiennes généralisées, monodromie unipotente et intégrales itérées, Séminaire Bourbaki, 687 (1987), 31–52.

[10] P. Cartier. Fonctions polylogarithmes, nombres polyzetas et groupes pro-unipotents. Séminaire Bourbaki, 53 ème , n 885, 2000-2001.

[11] K.-T. Chen. Iterated integrals and exponential homomorphisms, Proc. Lond. Mathem. Soc. (3) 4 (1954) 502–512. | Article | MR 73174 | Zbl 0058.25603

[12] C. Costermans. Calcul non nommutatif : analyse des constantes d’arbre de fouille, thèse, Lille, 2008.

[13] C. Costermans, J.Y. Enjalbert and V. Hoang Ngoc Minh. Algorithmic and combinatoric aspects of multiple harmonic sums, Discrete Mathematics & Theoretical Computer Science Proceedings, 2005. | Zbl 1104.68075

[14] C. Costermans, V. Hoang Ngoc Minh. Some Results à l’Abel Obtained by Use of Techniques à la Hopf, “Workshop on Global Integrability of Field Theories and Applications”, Daresbury (UK), 1-3, November 2006. | Zbl 1188.11041

[15] C. Chevalley. Fundamental Concepts of Algebra, Academic Press, New York, 1956. | Zbl 0074.01502

[16] C. Costermans, V. Hoang Ngoc Minh. Noncommutative algebra, multiple harmonic sums and applications in discrete probability, Journal of Symbolic Computation, (2009), 801-817. | Article | MR 2522583 | Zbl 1179.11030

[17] M. Deneufchâtel. Intégrales itérées et physique combinatoire, Ph. D., Paris 13, 2012.

[18] P. Deligne. Equations Différentielles à Points Singuliers Réguliers, Lecture Notes in Math, 163, Springer-Verlag (1970). | Article | Zbl 0244.14004

[19] M. Deneufchâtel, G.H.E. Duchamp, V. Hoang Ngoc Minh, A.I. Solomon. Independence of hyperlogarithms over function fields via algebraic combinatorics, dans Lec. N. in Comp. Sc. (2011), Volume 6742/2011, 127-139. | Article | Zbl 1279.11069

[20] J. Dieudonné. Calcul infinitésimal, Hermann (1968). | Article

[21] G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo. Harmonic sums and polylogarithms at negative multi-indices, Journal of Symbolic Computation, 83, pp. 166-186 (2017). | Article | MR 3645649 | Zbl 1405.11107

[22] G.H.E. Duchamp, V. Hoang Ngoc Minh, Q.H. Ngo. Kleene stars of the plane, polylogarithms and symmetries, soumitted to TCS. | Article | MR 4030331 | Zbl 07129500

[23] V. Drinfel’d. Quantum groups, Proc. Int. Cong. Math., Berkeley, 1986.

[24] V. Drinfel’d. Quasi-Hopf Algebras, Len. Math. J., 1, 1419-1457, 1990.

[25] V. Drinfel’d. On quasitriangular quasi-Hopf algebras and on a group that is closely connected with Gal( ¯/), Leningrad Math. J., 4, 829-860, 1991. | Zbl 0728.16021

[26] F.J. Dyson, The radiation theories of Tomonaga, Schwinger and Feynman, Physical Rev, vol 75, (1949), pp. 486-502. | Article | MR 28203 | Zbl 0032.23702

[27] S. Eilenberg and S. Mac Lane. On the groups H(Π, n) I, Ann. of Math. 58 (1) (1953) 55–106. | Article

[28] E. Wardi. Mémoire de DEA, Lille, 1999.

[29] J.Y. Enjalbert, V. Hoang Ngoc Minh. Analytic and combinatorial aspects of Hurwitz polyzêtas, J. Th. des Nomb. de Bord., Vol. 19, (2007), 599-644. | Article | MR 2388791 | Zbl 1207.11087

[30] J.Y. Enjalbert, V. Hoang Ngoc Minh. Propriétés combinatoires et prolongement analytique effectif de polyzêtas de Hurwitz et de leurs homologues, J. Th. des Nomb. de Bord., 23 no. 2 (2011), 353-386. | Article | Zbl 1244.11075

[31] J.Y. Enjalbert, G.H.E. Duchamp, V. Hoang Ngoc Minh, C. Tollu. The contrivances of shuffle products and their siblings, Discrete Mathematics 340(9): 2286-2300 (2017). | Article | MR 3665082 | Zbl 1365.05298

[32] P. Flajolet, R. Sedgewick. Analytic combinatorics, Cambridge University Press, 2009. | Article | Zbl 1165.05001

[33] M. Fliess. Fonctionnelles causales non linéaires et indéterminées non commutatives, Bull. Soc. Math. France, N 109, 1981, pp. 3-40. | Article | Zbl 0476.93021

[34] J. Gonzalez-Lorca. Série de Drinfel’d, monodromie et algèbres de Hecke, Ph. D., Ecole Normale Supérieure, Paris, 1998.

[35] V Hoang Ngoc Minh. Summations of Polylogarithms via Evaluation Transform, dans Math. & Computers in Simulations, 1336, pp 707-728, 1996. | Article | MR 1430852 | Zbl 1037.33500

[36] V. Hoang Ngoc Minh. Fonctions de Dirichlet d’ordre n et de paramètre t, Disc. Math. 180, pp 221-242, 1998. | Article | MR 1603733

[37] V. Hoang Ngoc Minh & Jacob G.. Symbolic Integration of meromorphic differential equation via Dirichlet functions, Disc. Math. 210, pp. 87-116, 2000. | Article | MR 1731609 | Zbl 1122.34352

[38] V. Hoang Ngoc Minh, G. Jacob, N.E. Oussous, M. Petitot. Aspects combinatoires des polylogarithmes et des sommes d’Euler-Zagier, Journal Electronique du Séminaire Lotharingien de Combinatoire, B43e, (2000).

[39] V. Hoang Ngoc Minh, G. Jacob, N.E. Oussous, M. Petitot. De l’algèbre des ζ de Riemann multivariées à l’algèbre des ζ de Hurwitz multivariées, Journal Electronique du Séminaire Lotharingien de Combinatoire, 44, (2001).

[40] V. Hoang Ngoc Minh, M. Petitot. Lyndon words, polylogarithmic functions and the Riemann ζ function, Discrete Math., 217, 2000, pp. 273-292. | Article | MR 1766271 | Zbl 0959.68144

[41] V. Hoang Ngoc Minh, M. Petitot, J. Van der Hoeven. Polylogarithms and Shuffle Algebra, Proceedings of FPSAC’98, 1998.

[42] V. Hoang Ngoc Minh. Finite polyzêtas, Poly-Bernoulli numbers, identities of polyzêtas and noncommutative rational power series, Proceedings of 4 th International Conference on Words, pp. 232-250, 2003. | MR 2081357 | Zbl 1067.11011

[43] V. Hoang Ngoc Minh. Differential Galois groups and noncommutative generating series of polylogarithms, Automata, Combinatorics & Geometry, World Multi-conf. on Systemics, Cybernetics & Informatics, Florida, 2003.

[44] V. Hoang Ngoc Minh. Shuffle algebra and differential Galois group of colored polylogarithms, Nuclear Physics B, 135 (2004), pp. 220-224. | Article | MR 2111843

[45] V. Hoang Ngoc Minh. Algebraic Combinatoric Aspects of Asymptotic Analysis of Nonlinear Dynamical System with Singular Inputs, Acta Academiae Aboensis, Ser. B, Vol. 67, no. 2, (2007), pp. 117-126.

[46] V. Hoang Ngoc Minh. On a conjecture by Pierre Cartier about a group of associators, Acta Math. Vietnamica (2013), 38, Issue 3, 339-398. | Article | MR 3095487 | Zbl 1283.11122

[47] V. Hoang Ngoc Minh. Structure of polyzetas and Lyndon words, Vietnamese Math. J. (2013), 41, Issue 4, 409-450. | Article | MR 3142405 | Zbl 1296.05204

[48] M. Hoffman. Quasi-shuffle products, J. Alg. Combin. 11 (1) (2000) 49–68. | MR 1747062 | Zbl 0959.16021

[49] D. Knutson. λ-rings and the representation theory of the symmetric group, Lecture Notes in Mathematics, vol. 308, Springer-Verlag, 1973. | Article | MR 364425 | Zbl 0272.20008

[50] J.A. Lappo-Danilevsky. Théorie des systèmes des équations différentielles linéaires, Chelsea, New York, 1953. | Zbl 0051.32301

[51] A. Lascoux. Fonctions symétriques, journal électronique du Séminaire Lotharingien de Combinatoire, B08e, (1983).

[52] T.Q.T. Lê, J. Murakami. Kontsevich’s integral for Kauffman polynomial, Nagoya Math., pp 39-65, 1996. | Article | MR 1399467 | Zbl 0866.57008

[53] M. Lothaire. Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Addison-Wesley, 1983.

[54] W. Magnus. On the exponential solution of differential equations for a linear operator., AC on Pure and App. Math., VII:649–673, 1954. | Article | MR 67873 | Zbl 0056.34102

[55] G. Racinet. Séries génératrices non-commutatives de polyzêtas et associateurs de Drinfel’d, Ph. D., Amiens, 2000.

[56] R. Ree. Lie elements and an algebra associated with shuffles Ann. Math 68 210–220, 1958. | Article | MR 100011 | Zbl 0083.25401

[57] C. Reutenauer. Free Lie Algebras, London Math. Soc. Monographs (1993). | Zbl 0798.17001

[58] G. Viennot. Algèbres de Lie libres et monoïdes libres, Lecture Notes in Mathematics, Springer-Verlag, 691, 1978. | Zbl 0395.17003

[59] D. Zagier. Values of zeta functions and their applications, in “First European Congress of Mathematics”, vol. 2, Birkhäuser, pp. 497-512, 1994. | Article | Zbl 0822.11001