Definability in the group of infinitesimals of a compact Lie group
Confluentes Mathematici, Volume 11 (2019) no. 2, pp. 3-23.

We show that for G a simple compact Lie group, the infinitesimal subgroup G 00 is bi-interpretable with a real closed convexly valued field. We deduce that for G an infinite definably compact group definable in an o-minimal expansion of a field, G 00 is bi-interpretable with the disjoint union of a (possibly trivial) -vector space and finitely many (possibly zero) real closed valued fields. We also describe the isomorphisms between such infinitesimal subgroups, and along the way prove that every definable field in a real closed convexly valued field R is definably isomorphic to R.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/cml.58
Classification: 03C64, 22E15
Keywords: Model Theory, Compact Lie Group, Infinitesimal Subgroup, O-Minimality, Bi-interpretation, Valued Field

Martin Bays 1; Ya’acov Peterzil 2

1 Institut für Logik und Grundlagenforschung, Fachbereich Mathematik und Informatik, Universität Münster, Einsteinstrasse 62, 48149 Münster, Germany
2 Department of Mathematics, University of Haifa, Haifa, Israel
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CML_2019__11_2_3_0,
     author = {Martin Bays and Ya{\textquoteright}acov Peterzil},
     title = {Definability in the group of infinitesimals of a compact {Lie} group},
     journal = {Confluentes Mathematici},
     pages = {3--23},
     publisher = {Institut Camille Jordan},
     volume = {11},
     number = {2},
     year = {2019},
     doi = {10.5802/cml.58},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.58/}
}
TY  - JOUR
AU  - Martin Bays
AU  - Ya’acov Peterzil
TI  - Definability in the group of infinitesimals of a compact Lie group
JO  - Confluentes Mathematici
PY  - 2019
SP  - 3
EP  - 23
VL  - 11
IS  - 2
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.58/
DO  - 10.5802/cml.58
LA  - en
ID  - CML_2019__11_2_3_0
ER  - 
%0 Journal Article
%A Martin Bays
%A Ya’acov Peterzil
%T Definability in the group of infinitesimals of a compact Lie group
%J Confluentes Mathematici
%D 2019
%P 3-23
%V 11
%N 2
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.58/
%R 10.5802/cml.58
%G en
%F CML_2019__11_2_3_0
Martin Bays; Ya’acov Peterzil. Definability in the group of infinitesimals of a compact Lie group. Confluentes Mathematici, Volume 11 (2019) no. 2, pp. 3-23. doi : 10.5802/cml.58. https://cml.centre-mersenne.org/articles/10.5802/cml.58/

[1] Alessandro Berarducci o-minimal spectra, infinitesimal subgroups and cohomology, J. Symbolic Logic, Volume 72 (2007) no. 4, pp. 1177-1193 | DOI | MR | Zbl

[2] Nicolas Bourbaki Lie groups and Lie algebras. Chapters 1–3, Elements of Mathematics (Berlin), Springer-Verlag, Berlin, 1989, xviii+450 pages (Translated from the French, Reprint of the 1975 edition) | DOI | MR | Zbl

[3] Elie Cartan Sur les représentations linéaires des groupes clos, Comment. Math. Helv., Volume 2 (1930) no. 1, pp. 269-283 | DOI | MR | Zbl

[4] Gregory Cherlin; Max A. Dickmann Real closed rings. II. Model theory, Ann. Pure Appl. Logic, Volume 25 (1983) no. 3, pp. 213-231 | DOI | MR | Zbl

[5] Alessandro D’Andrea; Andrea Maffei Commutators of small elements in compact semisimple groups and Lie algebras, J. Lie Theory, Volume 26 (2016) no. 3, pp. 683-690 | DOI | MR | Zbl

[6] William Fulton; Joe Harris Representation theory, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991, xvi+551 pages | DOI | MR | Zbl

[7] Ehud Hrushovski; Ya’acov Peterzil; Anand Pillay On central extensions and definably compact groups in o-minimal structures, J. Algebra, Volume 327 (2011), pp. 71-106 | DOI | MR | Zbl

[8] Ehud Hrushovski; Silvain Rideau Valued fields, metastable groups (2018) | arXiv | DOI | MR | Zbl

[9] Anthony W. Knapp Lie groups beyond an introduction, Progress in Mathematics, 140, Birkhäuser Boston, Inc., Boston, MA, 2002, xviii+812 pages | DOI | MR | Zbl

[10] Dugald Macpherson; David Marker; Charles Steinhorn Weakly o-minimal structures and real closed fields, Trans. Amer. Math. Soc., Volume 352 (2000) no. 12, pp. 5435-5483 | DOI | MR | Zbl

[11] Jana Maříková Type-definable and invariant groups in o-minimal structures, J. Symbolic Logic, Volume 72 (2007) no. 1, pp. 67-80 | DOI | MR | Zbl

[12] T. Mellor Imaginaries in real closed valued fields, Ann. Pure Appl. Logic, Volume 139 (2006) no. 1-3, pp. 230-279 | DOI | MR | Zbl

[13] Ali Nesin; Anand Pillay Some model theory of compact Lie groups, Trans. Amer. Math. Soc., Volume 326 (1991) no. 1, pp. 453-463 | DOI | MR | Zbl

[14] A. L. Onishchik; È. B. Vinberg Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990, xx+328 pages (Translated from the Russian and with a preface by D. A. Leites) | DOI | MR | Zbl

[15] Margarita Otero; Ya’acov Peterzil; Anand Pillay On groups and rings definable in o-minimal expansions of real closed fields, Bull. London Math. Soc., Volume 28 (1996) no. 1, pp. 7-14 | DOI | MR | Zbl

[16] Y. Peterzil; A. Pillay; S. Starchenko Definably simple groups in o-minimal structures, Trans. Amer. Math. Soc., Volume 352 (2000) no. 10, pp. 4397-4419 | DOI | MR | Zbl

[17] Ya’acov Peterzil; Anand Pillay; Sergei Starchenko Simple algebraic and semialgebraic groups over real closed fields, Trans. Amer. Math. Soc., Volume 352 (2000) no. 10, pp. 4421-4450 | DOI | MR | Zbl

[18] Ya’acov Peterzil; Sergei Starchenko A trichotomy theorem for o-minimal structures, Proc. London Math. Soc. (3), Volume 77 (1998) no. 3, pp. 481-523 | DOI | MR | Zbl

[19] Ya’acov Peterzil; Charles Steinhorn Definable compactness and definable subgroups of o-minimal groups, J. London Math. Soc. (2), Volume 59 (1999) no. 3, pp. 769-786 | DOI | MR | Zbl

[20] Anand Pillay On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra, Volume 53 (1988) no. 3, pp. 239-255 | DOI | MR | Zbl

[21] Anand Pillay On fields definable in Q p , Arch. Math. Logic, Volume 29 (1989) no. 1, pp. 1-7 | DOI | MR | Zbl

[22] Anand Pillay Type-definability, compact Lie groups, and o-minimality, J. Math. Log., Volume 4 (2004) no. 2, pp. 147-162 | DOI | MR | Zbl

[23] Bruno Poizat MM. Borel, Tits, Zil’ber et le Général Nonsense, J. Symbolic Logic, Volume 53 (1988) no. 1, pp. 124-131 | DOI | MR | Zbl

[24] L. van den Dries Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, 248, Cambridge University Press, Cambridge, 1998, x+180 pages | DOI | MR | Zbl

[25] B. L. van der Waerden Stetigkeitssätze für halbeinfache Liesche Gruppen, Math. Z., Volume 36 (1933) no. 1, pp. 780-786 | DOI | MR | Zbl

[26] Peter Woit Quantum theory, groups and representations, Springer, Cham, 2017, xxii+668 pages | DOI | MR | Zbl

Cited by Sources: