For every there is a natural notion of topological degree for maps in which allows us to write that space as a disjoint union of classes,
For every pair , we show that the distance
equals the minimal -energy in . In the special case we deduce from the latter formula an explicit value: .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.48
Keywords: ${\protect \mathbb{S}}^1$-valued maps, Fractional Sobolev spaces
Itai Shafrir 1
CC-BY-NC-ND 4.0
@article{CML_2018__10_1_125_0,
author = {Itai Shafrir},
title = {On the distance between homotopy classes in $W^{1/p,p}({\protect \mathbb{S}}^1;{\protect \mathbb{S}}^1)$},
journal = {Confluentes Mathematici},
pages = {125--136},
publisher = {Institut Camille Jordan},
volume = {10},
number = {1},
year = {2018},
doi = {10.5802/cml.48},
mrnumber = {3869013},
language = {en},
url = {https://cml.centre-mersenne.org/articles/10.5802/cml.48/}
}
TY - JOUR
AU - Itai Shafrir
TI - On the distance between homotopy classes in $W^{1/p,p}({\protect \mathbb{S}}^1;{\protect \mathbb{S}}^1)$
JO - Confluentes Mathematici
PY - 2018
SP - 125
EP - 136
VL - 10
IS - 1
PB - Institut Camille Jordan
UR - https://cml.centre-mersenne.org/articles/10.5802/cml.48/
DO - 10.5802/cml.48
LA - en
ID - CML_2018__10_1_125_0
ER -
%0 Journal Article
%A Itai Shafrir
%T On the distance between homotopy classes in $W^{1/p,p}({\protect \mathbb{S}}^1;{\protect \mathbb{S}}^1)$
%J Confluentes Mathematici
%D 2018
%P 125-136
%V 10
%N 1
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.48/
%R 10.5802/cml.48
%G en
%F CML_2018__10_1_125_0
Itai Shafrir. On the distance between homotopy classes in $W^{1/p,p}({\protect \mathbb{S}}^1;{\protect \mathbb{S}}^1)$. Confluentes Mathematici, Tome 10 (2018) no. 1, pp. 125-136. doi: 10.5802/cml.48
[1] Lifting, degree, and distributional Jacobian revisited, Comm. Pure Appl. Math., Volume 58 (2005) no. 4, pp. 529-551 | DOI | Zbl | MR
[2] A new estimate for the topological degree, C. R. Math. Acad. Sci. Paris, Volume 340 (2005) no. 11, pp. 787-791 | DOI | Zbl | MR
[3] A boundary value problem related to the Ginzburg-Landau model, Comm. Math. Phys., Volume 142 (1991) no. 1, pp. 1-23 http://projecteuclid.org/euclid.cmp/1104248488 | Zbl | DOI | MR
[4] New questions related to the topological degree, The unity of mathematics (Progr. Math.), Volume 244, Birkhäuser Boston, Boston, MA, 2006, pp. 137-154 | DOI | Zbl | MR
[5] Distances between homotopy classes of , ESAIM Control Optim. Calc. Var., Volume 22 (2016) no. 4, pp. 1204-1235 | DOI | Zbl | MR
[6] Distances between classes in , Calc. Var. Partial Differential Equations, Volume 57 (2018) no. 1, Art. 14, 32 p pages | Zbl | MR
[7] Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.), Volume 1 (1995) no. 2, pp. 197-263 | DOI | Zbl | MR
[8] Profile decomposition and phase control for circle-valued maps in one dimension, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 12, pp. 1087-1092 | DOI | Zbl | MR
[9] Optimal constant in a new estimate for the degree, J. Anal. Math., Volume 101 (2007), pp. 367-395 | DOI | Zbl | MR
Cité par Sources :