On Framed Quivers, BPS Invariants and Defects
Confluentes Mathematici, Tome 9 (2017) no. 2, pp. 71-99.

In this note we review some of the uses of framed quivers to study BPS invariants of Donaldson-Thomas type. We will mostly focus on non-compact Calabi-Yau threefolds. In certain cases the study of these invariants can be approached as a generalized instanton problem in a six dimensional cohomological Yang-Mills theory. One can construct a quantum mechanics model based on a certain framed quiver which locally describes the theory around a generalized instanton solution. The problem is then reduced to the study of the moduli spaces of representations of these quivers. Examples include the affine space and noncommutative crepant resolutions of orbifold singularities. In the second part of the survey we introduce the concepts of defects in physics and argue with a few examples that they give rise to a modified Donaldson-Thomas problem. We mostly focus on divisor defects in six dimensional Yang-Mills theory and their relation with the moduli spaces of parabolic sheaves. In certain cases also this problem can be reformulated in terms of framed quivers.

Reçu le : 2015-02-28
Révisé le : 2015-07-23
Accepté le : 2015-07-27
Publié le : 2017-12-14
DOI : https://doi.org/10.5802/cml.42
Classification : 14N35,  81T13,  81T60
Mots clés: Donaldson-Thomas theory, BPS invariants, Quivers and Representation Theory, Defects in Quantum Field Theory
@article{CML_2017__9_2_71_0,
     author = {Michele Cirafici},
     title = {On Framed Quivers, BPS Invariants and Defects},
     journal = {Confluentes Mathematici},
     publisher = {Institut Camille Jordan},
     volume = {9},
     number = {2},
     year = {2017},
     pages = {71-99},
     doi = {10.5802/cml.42},
     mrnumber = {3745162},
     zbl = {1394.14012},
     language = {en},
     url = {cml.centre-mersenne.org/item/CML_2017__9_2_71_0/}
}
Michele Cirafici. On Framed Quivers, BPS Invariants and Defects. Confluentes Mathematici, Tome 9 (2017) no. 2, pp. 71-99. doi : 10.5802/cml.42. https://cml.centre-mersenne.org/item/CML_2017__9_2_71_0/

[1] M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi and C. Vafa, 𝒩=2 quantum field theories and their BPS quivers, Adv. Theor. Math. Phys. 18:27, 2014. arXiv:hep-th/1112.3984. | Article | MR 3268234 | Zbl 1309.81142

[2] L. Baulieu, H. Kanno, I. M. Singer, Special quantum field theories in eight-dimensions and other dimensions, Commun. Math. Phys. 194:149–175, 1998. arXiv:hep-th/9704167. | Article | MR 1628298 | Zbl 0910.53054

[3] K. Behrend, Donaldson-Thomas invariants via microlocal geometry, Ann. Math. 170:1307–1338, 2009. arXiv:math.AG/0507523. | Article | MR 2600874 | Zbl 1191.14050

[4] K. Behrend and B. Fantechi, Symmetric obstruction theories and Hilbert schemes of points on threefolds, Alg. Number Th. 2:313–345, 2008. [arXiv:math.AG/0512556]. | Article | MR 2407118 | Zbl 1170.14004

[5] Y. Cao and N. C. Leung, Donaldson-Thomas theory for Calabi-Yau 4-folds. arXiv:math.AG/ 1407.7659. | Article | MR 3660236 | Zbl 1373.14053

[6] W. Y. Chuang, D. E. Diaconescu, J. Manschot, G. W. Moore and Y. Soibelman, Geometric engineering of (framed) BPS states, Adv. Theor. Math. Phys. 18:1063, 2014. arXiv:hep-th/1301.3065. | Article | MR 3281276 | Zbl 1365.81092

[7] M. Cirafici, Defects in cohomological gauge theory and Donaldson-Thomas Invariants. arXiv:hep-th/1302.7297. | Article | MR 3604550 | Zbl 1361.14031

[8] M. Cirafici, Line defects and (framed) BPS quivers, J. High En. Phys. 1311:141, 2013. arXiv:hep-th/1307.7134. | Article | Zbl 1342.81568

[9] M. Cirafici, Quivers, line defects and framed BPS Invariants, Ann. Henri Poincaré, to appear. arXiv:hep-th/1703.06449. | Article | MR 3743754 | Zbl 1384.81071

[10] M. Cirafici and M. Del Zotto, Discrete integrable systems, supersymmetric quantum mechanics, and framed BPS States - I. arXiv:hep-th/1703.04786.

[11] M. Cirafici, A. -K. Kashani-Poor and R. J. Szabo, Crystal melting on toric surfaces, J. Geom. Phys. 61:2199, 2011. arXiv:hep-th/0912.0737. | Article | MR 2827119 | Zbl 1226.81122

[12] M. Cirafici, A. Sinkovics, R. J. Szabo, Cohomological gauge theory, quiver matrix models and Donaldson-Thomas theory, Nucl. Phys. B809:452-518, 2009. arXiv:hep-th/0803.4188. | Article | MR 2478118 | Zbl 1192.81309

[13] M. Cirafici, A. Sinkovics and R. J. Szabo, Instantons and Donaldson-Thomas Invariants, Fortsch. Phys. 56:849, 2008. arXiv:hep-th0804.1087. | Article | MR 2442800 | Zbl 1152.81888

[14] M. Cirafici, A. Sinkovics and R. J. Szabo, Instanton counting and wall-crossing for orbifold quivers, Ann. Henri Poincare 14:1001, 2013. arXiv:hep-th/1108.3922. | Article | MR 3046463 | Zbl 1272.81113

[15] M. Cirafici, A. Sinkovics and R. J. Szabo, Instantons, quivers and noncommutative Donaldson-Thomas theory, Nucl. Phys. B 853:508, 2011. arXiv:hep-th/1012.2725. | Article | MR 2835515 | Zbl 1229.81178

[16] M. Cirafici and R. J. Szabo, Curve counting, instantons and McKay correspondences, J. Geom. Phys. 72:54, 2013. arXiv:hep-th/1209.1486. | Article | MR 3073901 | Zbl 1280.32001

[17] C. Cordova and A. Neitzke, Line defects, tropicalization, and multi-centered quiver quantum mechanics, J. High En. Phys. 1409:099, 2014. arXiv:hep-th1308.6829. | Article | MR 3267980 | Zbl 1333.81166

[18] M. R. Douglas and G. W. Moore, D-branes, quivers, and ALE instantons. arXiv:hep-th/9603167.

[19] B. Feigin, M. Finkelberg, A. Negut, L. Rybnikov Yangians and cohomology rings of Laumon spaves, Sel. Math. 17:1–35, 2008. arXiv:math.AG0812.4656v4. | Article | MR 2827177

[20] M. Finkelberg and L .Rybnikov, Quantization of Drinfeld Zastava in type A, J. Europ. Math. Soc., 2013. arXiv:math.AG/1009.0676v2. | Article | MR 3161283 | Zbl 1287.14024

[21] D. Gaiotto, G. W. Moore and A. Neitzke, Framed BPS States, Adv. Theor. Math. Phys. 17:241, 2013. arXiv:hep-th/1006.0146. | Article | MR 3250763 | Zbl 1290.81146

[22] D. Gaiotto, G. W. Moore and A. Neitzke, Wall-crossing in coupled 2d-4d Systems, J. High En. Phys. 1212:082, 2012. arXiv:hep-th/1103.2598. | Article | MR 3045271 | Zbl 1397.81364

[23] E. Gasparim and C. -C. M. Liu, The Nekrasov Conjecture for toric surfaces, Comm. Math. Phys. 293:661, 2010. arXiv:math.AG/0808.0884. | Article | MR 2566160 | Zbl 1194.14066

[24] S. Gukov, E. Witten, Gauge theory, ramification, and the geometric Langlands program. arXiv:hep-th/0612073. | Article | Zbl 1237.14024

[25] S. Gukov and E. Witten, Rigid surface operators, Adv. Theor. Math. Phys. 14, 2010. arXiv:hep-th/0804.1561. | Article | MR 2684979 | Zbl 1203.81114

[26] A. Iqbal, N. Nekrasov, A. Okounkov and C. Vafa, Quantum foam and topological strings, J. High En. Phys. 0804:011, 2008. arXiv:hep-th/0312022. | Article | Zbl 1246.81338

[27] Y. Ito and H. Nakajima, McKay correspondence and Hilbert schemes in dimension three, Topol. 39:1155–1191, 2000. arXiv:math.AG/9803120. | Article | MR 1783852 | Zbl 0995.14001

[28] D. L. Jafferis and G. W. Moore, Wall crossing in local Calabi-Yau manifolds. arXiv:hep-th/0810.4909.

[29] D. Joyce and Y. Song, A theory of generalized Donaldson-Thomas invariants, Mem. Amer. Math. Soc. 217:1–199, 2012. arXiv:math.AG/0810.5645. | Article | MR 2951762 | Zbl 1259.14054

[30] I. R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536:199–218, 1998. arXiv:hep-th/9807080. | Article | MR 1666725 | Zbl 0948.81619

[31] M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Num. Theor. Phys. 5:231, 2011. arXiv:math.AG/1006.2706. | Article | MR 2851153 | Zbl 1248.14060

[32] M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations,. arXiv:math.AG/0811.2435. | Article

[33] P. B.  Kronheimer and H. Nakajima, Yang-Mills instantons on ALE gravitational instantons, Math. Ann. 288:263–307, 1990. | Article | MR 1075769 | Zbl 0694.53025

[34] J. Manschot, B. Pioline and A. Sen, Wall crossing from Boltzmann black hole halos, J. High En. Phys. 1107:059, 2011. arXiv:hep-th/1011.1258. | Article | MR 2875965 | Zbl 1298.81320

[35] G. W. Moore, N. Nekrasov, S. Shatashvili, D particle bound states and generalized instantons, Comm. Math. Phys. 209 :77–95, 2000. arXiv:hep-th/9803265. | Article | MR 1736943 | Zbl 0971.81162

[36] G. W. Moore, N. Nekrasov, S. Shatashvili, Integrating over Higgs branches, Comm. Math. Phys. 209 :97-121, 2000. arXiv:hep-th/9712241. | Article | MR 1736944 | Zbl 0981.53082

[37] S. Mozgovoy and M. Reineke, On the noncommutative Donaldson-Thomas invariants arising from brane tilings, Adv. Math. 223:1521–1544, 2010. arXiv:math.AG/0809.0117. | Article | MR 2592501 | Zbl 1191.14008

[38] A. Negut, Affine Laumon spaces and the Calogero-Moser integrable system. arXiv:math.AG/ 1112.1756. | Article | MR 2545683 | Zbl 1185.37140

[39] N. A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7:831, 2004. arXiv:hep-th/0206161. | Article | MR 2045303

[40] N. A. Nekrasov, Localizing gauge theories, in: 14th International Congress on Mathematical Physics, ed. J.-C. Zambrini, World Scientific, 2005, p. 644. | Article | Zbl 1192.81235

[41] H. Ooguri and M. Yamazaki, Crystal melting and toric Calabi-Yau manifolds, Comm. Math. Phys. 292:179–199, 2009. arXiv:hep-th0811.2801. | Article | MR 2540074 | Zbl 1179.81139

[42] R. J. Szabo, Crystals, instantons and quantum toric geometry, Acta Phys. Polon. Supp. 4:461, 2011. arXiv:hep-th1102.3861.

[43] R. J. Szabo, Instantons, Topological strings and enumerative geometry, Adv. Math. Phys. 2010: 107857, 2010. arXiv:hep-th0912.1509. | Article | MR 2659797 | Zbl 1201.81094

[44] B. Szendrői, Noncommutative Donaldson-Thomas theory and the conifold, Geom. Topol. 12:1171, 2008. arXiv:math.AG/0705.3419. | Article | MR 2403807 | Zbl 1143.14034

[45] R. P. Thomas. A holomorphic Casson invariant for Calabi-Yau 3-folds and bundles on K3 fibrations", J. Diff. Geom. 54:367–438. arXiv:math.AG/9806111. | Article | MR 1818182 | Zbl 1034.14015

[46] M. Van den Bergh, Three-dimensional flops and noncommutative rings, Duke Math. J. 122:423–455, 2004. arXiv:math.AG/0207170. | Article | MR 2057015 | Zbl 1074.14013

[47] D. Xie, Higher laminations, webs and N=2 line operators. arXiv:hep-th/1304.2390.