Veränderungen über einen Satz von Timmesfeld – I. Quadratic Actions
[Variations on a Theorem of Timmesfeld – I. Quadratic Actions]
Confluentes Mathematici, Tome 5 (2013) no. 2, pp. 25-46.

We classify quadratic SL 2 (𝕂)- and 𝔰𝔩 2 (𝕂)-modules by crude computation, generalising in the first case a Theorem proved independently by F.G. Timmesfeld and S. Smith. The paper is the first of a series dealing with linearisation results for abstract modules of algebraic groups and associated Lie rings.

Reçu le : 2012-12-31
Révisé le : 2013-04-07
Accepté le : 2013-08-20
Publié le : 2017-03-26
DOI : https://doi.org/10.5802/cml.6
Classification : 20G05,  20G15,  17B10,  17B45
@article{CML_2013__5_2_25_0,
     author = {Adrien Deloro},
     title = {Ver\"anderungen \"uber einen Satz von Timmesfeld -- I. Quadratic Actions},
     journal = {Confluentes Mathematici},
     pages = {25--46},
     publisher = {Institut Camille Jordan},
     volume = {5},
     number = {2},
     year = {2013},
     doi = {10.5802/cml.6},
     language = {en},
     url = {cml.centre-mersenne.org/item/CML_2013__5_2_25_0/}
}
Adrien Deloro. Veränderungen über einen Satz von Timmesfeld – I. Quadratic Actions. Confluentes Mathematici, Tome 5 (2013) no. 2, pp. 25-46. doi : 10.5802/cml.6. https://cml.centre-mersenne.org/item/CML_2013__5_2_25_0/

[1] Andrew Chermak Quadratic pairs, J. Algebra, Volume 277 (2004) no. 1, pp. 36-72 | Article

[2] George Glauberman A sufficient condition for p stability, Proc. London Math. Soc. (3), Volume 25 (1972), pp. 253-287

[3] Chat-Yin Ho On the quadratic pairs, J. Algebra, Volume 43 (1976) no. 1, pp. 338-358

[4] Alexander Arcadievitch Premet; Irina Dmitrievna Suprunenko Quadratic modules for Chevalley groups over fields of odd characteristics, Math. Nachr., Volume 110 (1983), pp. 65-96 | Article

[5] Stephen D. Smith Quadratic action and the natural module for SL 2 (k), J. Algebra, Volume 127 (1989) no. 1, pp. 155-162

[6] John G. Thompson Quadratic pairs, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, p. 375-376

[7] Franz Georg Timmesfeld Groups generated by k-transvections, Invent. Math., Volume 100 (1990) no. 1, pp. 167-206

[8] Franz Georg Timmesfeld Abstract root subgroups and quadratic action, Adv. Math., Volume 142 (1999) no. 1, pp. 1-150 (With an appendix by A. E. Zalesskii) | Article

[9] Franz Georg Timmesfeld Abstract root subgroups and simple groups of Lie type, Monographs in Mathematics, Volume 95, Birkhäuser Verlag, Basel, 2001, xiv+389 pages