We classify quadratic - and -modules by crude computation, generalising in the first case a Theorem proved independently by F.G. Timmesfeld and S. Smith. The paper is the first of a series dealing with linearisation results for abstract modules of algebraic groups and associated Lie rings.
Revised:
Accepted:
Published online:
Adrien Deloro 1
@article{CML_2013__5_2_25_0, author = {Adrien Deloro}, title = {Ver\"anderungen \"uber einen {Satz} von {Timmesfeld} {\textendash} {I.} {Quadratic} {Actions}}, journal = {Confluentes Mathematici}, pages = {25--46}, publisher = {Institut Camille Jordan}, volume = {5}, number = {2}, year = {2013}, doi = {10.5802/cml.6}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.6/} }
TY - JOUR AU - Adrien Deloro TI - Veränderungen über einen Satz von Timmesfeld – I. Quadratic Actions JO - Confluentes Mathematici PY - 2013 SP - 25 EP - 46 VL - 5 IS - 2 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.6/ DO - 10.5802/cml.6 LA - en ID - CML_2013__5_2_25_0 ER -
Adrien Deloro. Veränderungen über einen Satz von Timmesfeld – I. Quadratic Actions. Confluentes Mathematici, Volume 5 (2013) no. 2, pp. 25-46. doi : 10.5802/cml.6. https://cml.centre-mersenne.org/articles/10.5802/cml.6/
[1] Quadratic pairs, J. Algebra, Volume 277 (2004) no. 1, pp. 36-72 | DOI
[2] A sufficient condition for stability, Proc. London Math. Soc. (3), Volume 25 (1972), pp. 253-287
[3] On the quadratic pairs, J. Algebra, Volume 43 (1976) no. 1, pp. 338-358
[4] Quadratic modules for Chevalley groups over fields of odd characteristics, Math. Nachr., Volume 110 (1983), pp. 65-96 | DOI
[5] Quadratic action and the natural module for , J. Algebra, Volume 127 (1989) no. 1, pp. 155-162
[6] Quadratic pairs, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 375-376
[7] Groups generated by -transvections, Invent. Math., Volume 100 (1990) no. 1, pp. 167-206
[8] Abstract root subgroups and quadratic action, Adv. Math., Volume 142 (1999) no. 1, pp. 1-150 (With an appendix by A. E. Zalesskii) | DOI
[9] Abstract root subgroups and simple groups of Lie type, Monographs in Mathematics, 95, Birkhäuser Verlag, Basel, 2001, xiv+389 pages
Cited by Sources: