Model theory of Hilbert spaces with a discrete group action
Confluentes Mathematici, Tome 17 (2025), pp. 33-54

In this paper we study expansions of infinite dimensional Hilbert spaces with a unitary representation of a discrete countable group. When the group is finite, we prove the theory of the corresponding expansion, regardless if it is existentially closed, has quantifier elimination, is $\aleph _0$-categorical, $\aleph _0$-stable and SFB. On the other hand, when the group involved is countably infinite, the theory of the Hilbert space expanded by the representation of this group is $\aleph _0$-categorical up to perturbations. Additionally, when the expansion is model complete, we prove that it is $\aleph _0$-stable up to perturbations.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/cml.99
Classification : 03C66, 03C45, 47D03, 47C15
Keywords: Hilbert spaces, representation theory, $C^*$-algebras, stability theory, belle paires, classification theory, perturbations

Alexander Berenstein 1 ; Juan Perez 2

1 Universidad de los Andes, Cra 1 No 18A-12, Bogotá, Colombia
2 Université de Mons, Place du Parc 20, 7000 Mons, Belgique
Licence : CC-BY-NC-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CML_2025__17__33_0,
     author = {Alexander Berenstein and Juan Perez},
     title = {Model theory of {Hilbert} spaces with a discrete group action},
     journal = {Confluentes Mathematici},
     pages = {33--54},
     year = {2025},
     publisher = {Institut Camille Jordan},
     volume = {17},
     doi = {10.5802/cml.99},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.99/}
}
TY  - JOUR
AU  - Alexander Berenstein
AU  - Juan Perez
TI  - Model theory of Hilbert spaces with a discrete group action
JO  - Confluentes Mathematici
PY  - 2025
SP  - 33
EP  - 54
VL  - 17
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.99/
DO  - 10.5802/cml.99
LA  - en
ID  - CML_2025__17__33_0
ER  - 
%0 Journal Article
%A Alexander Berenstein
%A Juan Perez
%T Model theory of Hilbert spaces with a discrete group action
%J Confluentes Mathematici
%D 2025
%P 33-54
%V 17
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.99/
%R 10.5802/cml.99
%G en
%F CML_2025__17__33_0
Alexander Berenstein; Juan Perez. Model theory of Hilbert spaces with a discrete group action. Confluentes Mathematici, Tome 17 (2025), pp. 33-54. doi: 10.5802/cml.99

[1] Camilo Argoty; Alexander Berenstein Hilbert spaces expanded with a unitary operator, Math. Log. Q., Volume 55 (2009) no. 1, pp. 37-50 | DOI | Zbl

[2] Itaï Ben Yaacov On perturbations of continuous structures, J. Math. Log., Volume 8 (2008) no. 2, pp. 225-249 | DOI | Zbl

[3] Itaï Ben Yaacov Modular functionals and perturbations of Nakano spaces, J. Log. Anal., Volume 1 (2009), 1, 42 pages | DOI | Zbl

[4] Itaï Ben Yaacov; Alexander Berenstein On perturbations of Hilbert spaces and probability algebras with a generic automorphism, J. Log. Anal., Volume 1 (2009), 7, 18 pages | DOI | Zbl

[5] Itaï Ben Yaacov; Alexander Berenstein; C. Ward Henson Almost indiscernible sequences and convergence of canonical bases, J. Symb. Log., Volume 79 (2014) no. 2, pp. 460-484 | DOI | Zbl

[6] Itaï Ben Yaacov; Alexander Berenstein; C. Ward Henson; Alexander Usvyatsov Model theory for metric structures, Model theory with applications to algebra and analysis. Vol. 2 (London Mathematical Society Lecture Note Series), Volume 350, Cambridge University Press, 2008, pp. 315-427 | Zbl

[7] Itaï Ben Yaacov; Alexander Usvyatsov Continuous first order logic and local stability, Trans. Am. Math. Soc., Volume 362 (2010) no. 10, pp. 5213-5259 | DOI | Zbl | MR

[8] Itaï Ben Yaacov; Alexander Usvyatsov; Moshe Zadka Generic automorphism of a Hilbert space (2008)

[9] Alexander Berenstein Hilbert spaces with generic groups of automorphisms, Arch. Math. Logic, Volume 46 (2007) no. 3-4, pp. 289-299 | DOI | Zbl | MR

[10] Alexander Berenstein; Tapani Hyttinen; Andrés Villaveces Hilbert spaces with generic predicates, Rev. Colomb. Mat., Volume 52 (2018) no. 1, pp. 107-130 | Zbl | DOI | MR

[11] Kenneth R. Davidson C * -algebras by example, Fields Institute Monographs, 6, American Mathematical Society, 1996 | Zbl | MR

[12] Arch W. Naylor; George R. Sell Linear operator theory in engineering and science, Applied Mathematical Sciences, 40, Springer, 1982 (Reprint of the 1971 original, publ. by Holt, Rinehart & Winston, Inc.) | Zbl | DOI

[13] Bruno Poizat On perturbations of continuous structures [Paires de structures stables], J. Symb. Log., Volume 48 (1983), pp. 239-249 | DOI | Zbl | MR

[14] Jean-Pierre Serre Linear representations of finite groups, Graduate Texts in Mathematics, 42, Springer, 1977 (Translated from the French by Leonard L. Scott) | Zbl | DOI | MR

[15] Itaï Ben Yaacov; Isaac Goldbring Unitary representations of locally compact groups as metric structures, Notre Dame J. Formal Logic, Volume 64 (2023) no. 2, pp. 159-172 | DOI | Zbl | MR

Cité par Sources :