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MODEL THEORY OF HILBERT SPACES WITH A DISCRETE
GROUP ACTION

ALEXANDER BERENSTEIN AND JUAN PEREZ

Abstract. In this paper we study expansions of infinite dimensional Hilbert spaces with a
unitary representation of a discrete countable group. When the group is finite, we prove the
theory of the corresponding expansion, regardless if it is existentially closed, has quantifier
elimination, is ℵ0-categorical, ℵ0-stable and SFB. On the other hand, when the group in-
volved is countably infinite, the theory of the Hilbert space expanded by the representation
of this group is ℵ0-categorical up to perturbations. Additionally, when the expansion is
model complete, we prove that it is ℵ0-stable up to perturbations.

1. Introduction

In this paper we work on model theoretic aspects of the expansion of a Hilbert
space by a unitary representation of a countable discrete group. A unitary rep-
resentation of a group G in a Hilbert space H is defined as an action of G on H
by elements of the group of unitary maps, denoted by U(H). In other words, a
representation is given by a homomorphism π : G → U(H), where the action of
g ∈ G on v ∈ H is denoted by π(g)v.

We treat Hilbert spaces as continuous structures in the language L = {0, −, 2̇,
x+y

2 , eiθ : θ ∈ 2πQ}, which allows to axiomatize Hilbert spaces as a universal theory
(the proof is a small modification of the argument in [3], the proof in [3] deals with
real Hilbert spaces where one omits the family {eiθ : θ ∈ 2πQ} and for the complex
case, one usually only includes i = eiπ/2) and in this language the theory has
quantifier elimination. To deal with expansions by a group of unitary maps, we
add a unary function symbol for each element g of the group and we interpret it
as π(g).

There are several papers that deal with similar expansions. For instance, expan-
sions of a Hilbert space with a single automorphism were studied in [8], showing
that the existentially closed models correspond to expansions by a unitary map
with spectrum S1. Moreover, it is also proved that the expansion is superstable
but not ℵ0-stable. In [9] it is proved that if G is amenable and countable, then
a Hilbert space H expanded by a countable number of copies of the left regular
representation of G is existentially closed. It is also proved that this class of expan-
sions has a model companion which is existentially axiomatizable. Furthermore,
when G is countable, this model companion is superstable. The theory of a Hilbert
space expanded by a single unitary operator with countable spectrum is treated
in [1], where it is proved that the expansion eliminates quantifiers and is ℵ0-stable.
Both papers [1, 8] relied heavily on tools from spectral theory like the spectral
decomposition theorem.
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In this paper, when the group involved is non abelian, we cannot use the spectral
decomposition theorem to describe the action. Instead, we rely on tools from
representation theory when dealing with finite groups or tools from C∗-algebras
theory when the group is not finite. We denote the theory of a Hilbert space
expanded by the unitary representation π of a group G as IHSπ.

We first consider expansions corresponding to actions of finite groups. The main
tool we use are basic ideas from representation theory (see [14], which we review
in Section 2 below). In this context, existentially closed expansions (that played
a crucial role in the literature of similar expansions) can be understood as those
with a richer presence of irreducible representations, other representations will have
instead irreducible pieces with finite multiplicity. We prove that the theory of any
such expansion is ℵ0-categorical and ℵ0-stable. We also define a natural notion
of independence and prove it coincides with non-forking, which allows us to prove
some “geometric” results associated to the theory of the expansion. For example,
we show the expansion is non-multidimensional. We also show that the associated
theory of Belles Paires of IHSπ is ℵ0-categorical and thus the theory IHSπ is strongly
finitely based (SFB)(see Fact 3.19 and the discussion before for more details).

Then we deal with the case when G is countable infinite. To analyze these expan-
sions, we need to switch to new tools. Instead of using tools from representation
theory, we need to consider the C∗-algebra generated by the unitary maps from
the representation and use consequences of Voiculescu’s theorem (see [11, Theo-
rem II.5.8] and Section 2 below) to prove that the theory IHSπ is ℵ0-categorical up
to perturbations, and when the theory IHSπ is model complete, it is ℵ0-stable up
to perturbations (see Definition 2.26 below).

This paper is organized as follows. In Section 2 we give some basic tools from
representation theory of finite groups, and basic background on operator theory
including the notion of spectrum of a unitary operator, some ideas from C∗-algebras
like Voicolescu’s Theorem, and some model-theoretic applications to perturbations.
In Section 3 we consider the case where G is finite, we prove the corresponding
expansions ℵ0-categorical and ℵ0-stable and give a natural characterization of non-
forking independence and show the theory is SFB. In Section 4, we deal with the
case where G is infinite and prove that the theory IHSπ is ℵ0-categorical up to
perturbations. Finally, we show that when the theory IHSπ is model complete,
then IHSπ is ℵ0-stable up to perturbations.

We will assume the reader is familiar with continuous logic, all background
needed can be found in [6, 7], some basic knowledge of perturbations will also
be helpful, the corresponding background can be found in [2]. We will assume no
prior knowledge of representation theory. The necessary background on this subject
and on operator theory will be introduced in Section 2.

2. Background on operator theory and representation theory

In this section, we first review results from representations of finite groups, our
main focus is on irreducible representations and projections onto sums of isomorphic
irreducible representations; these sums play the role of basic blocks that will help
us describe the theory IHSπ. We then introduce some technical tools from operator
theory and C∗-algebras concerning Voiculescu’s theorem.
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We start by introducing the language used to treat a Hilbert space expanded by
a unitary group representation as a metric structure.

Definition 2.1. — Let G be a group and let H be a Hilbert space. A unitary
representation π of G on H is a homomorphism π : G → U(H). We define

L =
{

0, −, 2̇,
x + y

2 , eiθ : θ ∈ 2πQ
}

to be the language of Hilbert spaces and
Lπ := L ∪ {π(g) : g ∈ G},

as the representation language, where each π(g) is a unary function with modulus of
uniform continuity ∆(ε) = ε. We denote the theory of infinite dimensional Hilbert
spaces by IHS. The language L defined above is the one presented in [3] enriched
by multiplication by the family of complex scalars {eiθ : θ ∈ 2πQ}. We denote by
IHSπ := Th(H, π) the theory of the infinite-dimensional Hilbert space H expanded
by the unitary representation π of G in the language Lπ. Note that the theory
IHSπ includes information like “each π(g) is a unitary map” and “for all g1, g2 ∈ G,
π(g1 · g2) = π(g1)π(g2) as functions”.

2.1. Representation theory of finite groups on linear groups. In this sub-
section we recall some results about representations of finite groups from [14]. These
results will be useful to prove that the theory IHSπ is ℵ0-categorical and ℵ0-stable,
where π is any unitary representation of a finite group G on an infinite dimensional
Hilbert space. In this subsection, G will always stand for a finite group and V for
a finite dimensional vector space.

Definition 2.2 ([14, Definition 1.1]). — A linear representation of G in V is a
homomorphism π from G into GL(V ). When V has dimension n, the representation
is said to have degree n.

Now, we introduce the left regular representation of G. As we will later see, this
representation is especially rich respect to other representations.

Definition 2.3 ([14, Example 1.2.b]). — Suppose that V has dimension |G|
with basis {eg}g∈G indexed by the elements of G (if we add to V a Hilbert space
structure, it is denoted by ℓ2(G)). For all h ∈ G, we denote by λG(h) the linear
map sending each eg to ehg; this defines a linear representation of G, which is called
the left regular representation of G and it is denoted by λG.

Definition 2.4 ([14, Section 1.3]). — Let π : G → GL(V ) be a linear repre-
sentation and let W be a vector subspace of V . Assume that W is invariant under
the action of G. Then, the restriction maps {π(g)↾W }g∈G are automorphisms of W
satisfying for all g1, g2 ∈ G

π(g1g2)↾W = π(g1)↾W π(g2)↾W .

Thus, π↾W : G → GL(W ) is a linear representation of G on W and it is called
a subrepresentation of V . Additionally, if W has no non-proper and non-trivial
subrepresentation, it is called an irreducible representation.

Fact 2.5 ([14, Theorem 2]). — Every linear representation is a direct sum of
irreducible representations.
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Fact 2.6 ([14, Corollary 1, Theorem 4]). — The number of irreducible repre-
sentations Wi isomorphic to a given irreducible representation W is independent of
the chosen decomposition.

These last two facts will allow us to understand the theory of a Hilbert space ex-
panded by a unitary representation of a group. An arbitrary unitary representation
can be split into a direct sum of its irreducible subrepresentations and we can count
the number of times each irreducible representation appears in the sum. We call
this number (which can be a natural number or ∞ when dealing with infinite di-
mensional Hilbert spaces) the multiplicity of the given irreducible representation.
Part of our work in Section 3 is to show that the multiplicity of each irreducible
representation can be recovered from the theory of the expansion.

Remark 2.7. — Let H be a Hilbert space of infinite dimension and let π be a
homomorphism from G to U(H). Studying such a representation can always be
reduced to the study of representations of G in finite dimensional subspaces. To
do this reduction, take some x ∈ H and consider the finite dimensional subspace
generated by {π(g)x}g∈G. In this space we could use the theory for representations
of finite dimension and then we wrap these spaces together to understand the action
of G all over H.

Fact 2.8 ([14, Corollary 1, Proposition 5]). — Every irreducible unitary rep-
resentation W of G is contained in the left regular representation of G with mul-
tiplicity equal to its degree. In particular, there are only finitely many irreducible
unitary representations of G.

This fact suggests that if we take the direct sum of countably many left regular
representations of G, then the structure obtained should be existentially closed,
which indeed is the case even in the larger setting of amenable groups:

Fact 2.9 ([9, Theorem 2.5 and Theorem 2.8]). — Let S be a countable and
amenable group. Then the model (∞ℓ2(S), ∞λS) := ⊕n⩾1(ℓ2(S), λS) (countable
copies of the representation (ℓ2(S), λS)) is existentially closed and its theory has
quantifier elimination.

The theory of the model described in Fact 2.9 is the model companion of the
theory of a Hilbert space expanded by any unitary representation of S. The proof
provided in [9] uses Hulanicki’s theorem. In this paper, we will give a different
proof of this result in Corollary 3.8 when the underlying group G is finite.

Let us return to tools from representation theory. Let T be a linear transforma-
tion over V , and let be B a basis of V . If [aij]B is the matrix representation of T
in the basis B, then the trace Tr(T ) :=

∑n
i=1 aii, is independent of the choice of B.

Definition 2.10 ([14, Definition 2.1]). — Let π be a linear representation of G
in V . For each g ∈ G, the map π(g) is a linear transformation over V and we denote
the trace of π(g) by χπ(g) := Tr(π(g)). This complex valued function χπ : G → C
is called the character of π.

Characters are important in representation theory since they determine the ir-
reducible representations. Indeed, two representations having the same characters
are isomorphic (see [14, Corollary 2, Theorem 4]), meaning that there is a bijective
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linear transformation between the representations preserving the action of G. Ad-
ditionally, in our context, characters play an important role since we will use them
(see Fact 2.11 below) for defining projections from a linear representation onto its
irreducible representations.

Given the group G, by Fact 2.8 there are finitely many irreducible unitary rep-
resentations W1, . . . , Wk (modulo isomorphism) of G. Let χ1, . . . , χk be their char-
acters and let n1, . . . , nk be their degrees.

Let V be a finite dimensional vector space with a linear representation of G.
Write V = U1 ⊕ · · · ⊕ Um as a decomposition of V into a direct sum of irreducible
representations of G. For each i = 1, . . . , k we denote by Vi the direct sum of
those irreducible pieces among U1, . . . , Um that are isomorphic to Wi. Then, we
can write V = V1 ⊕ · · · ⊕ Vk, a new decomposition of V into sums of irreducible
subrepresentations of V that belong to distinct classes of isomorphism.

Fact 2.11 ([14, Theorem 8]).
(1) The decomposition V ∼= V1 ⊕ · · · ⊕ Vk does not depend on the initially

chosen decomposition of V into irreducible representations of G in V .
(2) If 1 ⩽ i ⩽ k, the projection pi of V onto Vi associated to the decomposition

in (1) is given by pi = ni

|G|
∑

g∈G χi(g)∗π(g) (and may be identically 0 when
Wi is not represented in π).

Remark 2.12. — Consider now an infinite dimensional Hilbert space H and a
representation π of G in H and consider the expansion of H in the language Lπ

that includes a symbol for each π(g) for g ∈ G. For each 1 ⩽ i ⩽ k we let
Pi = ni

|G|
∑

g∈G χi(g)∗π(g), then the function Pi is definable in Lπ.

2.2. Operator theory and C∗-algebras. Let H be a Hilbert space and let T be
a bounded linear operator on H.

Definition 2.13. — The spectrum of a linear operator T , denoted by σ(T ), is
defined as the set

σ(T ) = {λ ∈ C : (T − λI) is not bijective}.

The spectrum can be divided into three different types:
• σp(T ) := {λ ∈ C : ker(T − λI) ̸= 0}; if λ ∈ σp(T ) we call λ a punctual

eigenvalue of T .
• σc(T ) := {λ ∈ C : ker(T − λI) = 0 and Im(T − λI) = H}; if λ ∈ σc(T )

we call λ an approximate eigenvalue of T .
• σr(T ) := {λ ∈ C : ker(T − λI) = 0 and Im(T − λI) ̸= H}; if λ ∈ σr(T )

we call λ a residual eigenvalue of T .
The punctual spectrum is the collection of punctual eigenvalues, the continuous

spectrum is the collection of approximate eigenvalues, and the residual spectrum is
the collection of residual eigenvalues.

Fact 2.14 ([12, Corollary 6.10.11]). — Let T be a normal operator over a
Hilbert space H. Then T has no residual eigenvalues. Thus, the spectrum of a
normal operator is divided only into two pieces

σ(T ) = σp(T ) ∪ σc(T ).
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Next, we introduce the concept of a C∗-algebra along with the concept of a
representation of a C∗-algebra. These two are fundamental to understand the key
concept that we will use in this paper: approximately unitarily equivalence between
algebras.

Definition 2.15 (Basics of [11]). — A Banach algebra A is a complex normed
algebra which is complete (as a topological space) and satisfies ∥AB∥ ⩽ ∥A∥∥B∥
for all A, B ∈ A.

Definition 2.16 (Basics of [11]). — A C∗-algebra A is Banach ∗-algebra (a Ba-
nach algebra with an involutive operation ∗) with the additional condition that
∥A∗A∥ = ∥A∥2 for all A ∈ A.

Example 2.17 ([11, Example 1.1]). — The algebra of all bounded operators B(H)
on a Hilbert space H is a C∗-algebra with the usual operation of adjoint −∗. This
result follows from the equality:

∥A∗A∥ = sup
∥x∥=∥y∥=1

|⟨A∗Ax, y⟩| = sup
∥x∥=∥y∥=1

|⟨Ax, Ay⟩| = ∥A∥2.

Example 2.18. — The subalgebra of compact operators in B(H) on a Hilbert
space H, denoted by K(H), also defines a C∗-algebra.

Definition 2.19 (Basics of [11]). — Let A be a C∗-algebra and let H be a
Hilbert space. A map π : A → B(H) is said to be a ∗-representation of A if π is a
homomorphism of ∗-algebras which commutes with the involution.

Definition 2.20 ([11, Section II.4]). — Let A be a C∗-algebra and let π1 and
π2 be representations of A on Hilbert spaces H1 and H2 respectively. The repre-
sentations π1 and π2 are called Approximately Unitarily Equivalent (AUE) if there
is a sequence of unitary operators {Ok}k∈N with Ok : H1 → H2 such that

π2(A) = lim
k→∞

Okπ1(A)O∗
k for all A ∈ A.

where convergence is in the sense of the operator norm topology.

There is a strong connection between two families of operators being approxi-
mately unitarily equivalent and the structures (the Hilbert spaces expanded with
the C∗-algebras) being elementary equivalent.

Remark 2.21. — Let A be a C∗-algebra and let π1 and π2 be representations
of A on separable infinite Hilbert spaces H1 and H2 respectively. Assume the
representations π1 and π2 are AUE. Then we have (H1, π1) ≡ (H2, π2).

Proof. — Since H1 and H2 are separable, we may assume H1 = H2. Since the
representations π1 and π2 are AUE there is a sequence {Ok}k∈N of unitary operators
satisfying

π2(A) = lim
k→∞

Okπ1(A)O∗
k for all A ∈ A. (2.1)

Let F be a non-principal ultrafilter over N and consider the ultrapowers∏
k,F

(H1, π1) and
∏
k,F

(H2, π2).

First define Φ:
∏

k,F H1 →
∏

k,F H2 as the map Φ([(vk)k]F ) = [(vk)k]F induced
by the identification H1 = H2 as Hilbert spaces. We extend the function Φ to
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the maps in the representation by defining, for each A ∈ A, the correspondence
Φ[(π1(A))k]F = [(Okπ1(A)O∗

k)k]F . For a fixed index k ∈ N, the map Ok is a unitary
transformation so the kth component of the map Φ that sends π1(A) to Okπ1(A)O∗

k

is an isomorphism of representations of A. Moreover, by Equation (2.1), for each
A ∈ A we have π2(A) = limk→∞ Okπ1(A)O∗

k, so the representation
∏

k,F (H2, π2)
is isomorphic to

∏
k,F (H2, Okπ1O∗

k) and thus
∏

k,F (H1, π1) ≡
∏

k,F (H2, π2). □

Voiculescu’s Theorem states that two separable C∗-algebras, say A and B, are
AUE if there is a completely positive definite map Φ: A → B (see [11, p. 65]) such
that K(H) ∩ A ⊆ ker(Φ) (see [11, Theorem II.5.3]). This last requirement is prob-
lematic in our context. Since we are considering not only the regular representations
(which have no compact operators in the generated C∗-algebra when the group is
infinite), but arbitrary representations of discrete groups, it is likely that they may
include compact operators. Thus, requiring the condition Φ(K(H) ∩ A) = 0 is too
restrictive. However, there are some consequences of Voiculescu’s theorem which
include a finer control on the behavior of compact operators under Φ that will work
better in our setting.

Definition 2.22 ([11, p. 34]). — Let A be a C∗-algebra and let (H, π) be a
representation of A. We say that π is non-degenerate if π(A)H is dense in H.

Fact 2.23 ([11, Lemma II.5.7]). — Let A be a C∗-subalgebra of the algebra
of compact operators and let π1 and π2 non-degenerate representations of A on
separable Hilbert spaces H1 and H2 respectively. Then, π1 and π2 are unitarily
equivalent, i.e. there exists U : H1 → H2 unitary such that

∥π2(A) − Uπ1(A)U∗∥ = 0

if and only if rank(π1(A)) =rank(π2(A)) for all A ∈ A.

Fact 2.24 ([11, Theorem II.5.8]). — Let A a separable C∗-algebra, and let π1
and π2 non-degenerate representations of A on separable Hilbert spaces. Then, π1
and π2 are AUE, if and only if rank(π1(A)) =rank(π2(A)) for all A ∈ A.

Model theoretic consequences of the previous fact go back to unpublished work
by C. Ward Henson, who pointed out to the first author of the paper that this result
characterizes, up to elementary equivalence, expansions of Hilbert spaces with a self
adjoint operator (in the form of the Weyl–von Neumann–Berg theorem).

Lemma 2.25. — Let A be a separable C∗-algebra. Then, every ∗-representation
π of A on a separable Hilbert space H, can be written as πc ⊕ π⊥

c , where πc is
composed only by compact operators and π⊥

c has no compact operators. Moreover,
we can write H = Hc ⊕ H⊥

c , and the operators in πc and π⊥
c act on Hc and H⊥

c

respectively.

Proof. — It folows from the proof of [11, Corollary II.5.9]. □

We now introduce perturbations in our setting. The reader may want to check [2]
for an introduction to the subject. The reader may also want to check [4] for the
theory of perturbations applied to expansions of Hilbert spaces with a single unitary
map.
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Definition 2.26. — Let G be a countable group, let π be a unitary representa-
tion of G in an infinite dimensional Hilbert space H, and let IHSπ = Th(H, π). Fix
{gn}n∈N an enumeration of G. Let (H1, π1) and (H2, π2) be models of IHSπ of the
same density character and let ε ⩾ 0. We define an ε-perturbation between (H1, π1)
and (H2, π2) to be an isometric isomorphism of Hilbert spaces U : H1 ∼= H2 which
also satisfies ∑

n⩾0

1
2n

∥∥Uπ1(gn)U−1 − π2(gn)
∥∥ ⩽ ε.

The set of all ε-perturbations will be denoted by Pertε((H1, π1), (H2, π2)) or simply
by Pertε(H1, π1) if (H2, π2) = (H1, π1).

Assume now that (H1, π1) is saturated and strongly homogeneous and let A ⊂
H1 be small and p, q ∈ Sn(A). Given ε ⩾ 0, we say that dpert(p, q) ⩽ ε if
there is a unitary map U on H1 and realizations a⃗ |= p, b⃗ |= q in H1 such that
U ∈ Pertε(H1, π1), U ↾A= idA and ∥U (⃗a) − b⃗∥ ⩽ ε. We say IHSπ is ℵ0-stable up to
perturbations if for any A ⊂ H1 separable, the density character of (S1(A), dpert)
is countable.

We say that (H1, π1) is ℵ0-saturated over (H0, π0) up to perturbations if for
any (H2, π2) ⪰ (H0, π0) with dim(H2 ∩ H⊥

1 ) ⩽ ℵ0 and every ε > 0 there is an
ε-perturbation between (H2, π2) and an elementary substructure of (H1, π1) that
fixes (H0, π0) pointwise.

We say the models (H1, π1) and (H2, π2) are approximately isomorphic if for
each ε > 0 there exists an ε-peturbation between them. The theory IHSπ is called
ℵ0-categorical up to perturbations if each pair of separable models of IHSπ are
approximately isomorphic.

Remark 2.27. — Fix a theory IHSπ. Assume that for every separable (H0, π0) |=
IHSπ there is a separable (H1, π1) ⪰ (H0, π0) which is ℵ0-saturated over (H0, π0)
up to perturbations. We claim that if this is the case, then IHSπ is ℵ0-stable up to
perturbations. Indeed, by Löwenheim–Skolem any separable subset A of a model of
IHSπ is a subset of a separable model (H0, π0) |= IHSπ. Then, if (H1, π1) ⪰ (H0, π0)
is separable and ℵ0-saturated over (H0, π0), the density character of (S1(H0), dpert)
is countable and thus so is the case for (S1(A), dpert).

3. Hilbert spaces expanded by a representation of a finite group G

In this section we will study unitary representations of a finite group G on a
separable infinite dimensional Hilbert space H. Let Lπ be as in Definition 2.1.
Let a⃗ ∈ Hn, we will write tp(⃗a) for the type in the sense of Hilbert spaces and
tpπ (⃗a) for the type in the extended language Lπ. Similarly, we write qftpπ (⃗a) for
the quantifier free type of the tuple in the extended language.

We will show that for any such representation π, the theory IHSπ = Th(H, π(g) :
g ∈ G) is ℵ0-categorical, has quantifier elimination and is ℵ0-stable.

Since G is finite, by Fact 2.8 there are finitely many irreducible representations
of G and all of them are finite dimensional. Let W1, . . . , Wk be a list of these rep-
resentations and, after reorganizing the list if necessary, we may assume there is
m ⩽ k such that W1, . . . , Wm are the irreducible representations of G having infin-
itely many copies in (H, π(g) : g ∈ G). Notice that, since H is infinite dimensional
and separable, the number m can not be zero, and the number of copies of any Wi
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for 1 ⩽ i ⩽ k is at most ℵ0. We can also define Hfin = Vm+1 ⊕ · · · ⊕ Vk as the
direct sum of the remaining irreducible representations, the ones appearing only
finite many times in H, say with multiplicity dm+1, . . . , dk respectively. Then, if
m + 1 ⩽ i ⩽ k, we have Vi

∼= W di
i . Notice that k could be equal to m and thus

Hfin could be the zero subspace. Finally write

H ∼=
∞⊕

t=1
W1

⊕
· · ·

∞⊕
t=1

Wm

⊕
Hfin

Definition 3.1. — For each m + 1 ⩽ i ⩽ k we call Vi =
⊕di

t=1 Wi a finite
component of H. On the other hand, for each 1 ⩽ i ⩽ m we call Hi =

⊕∞
t=1 Wi an

infinite component of H. Finally by a component we mean a finite component or
an infinite component. Also, by H inf we mean the sum H1 ⊕ · · · ⊕ Hm.

Proposition 3.2. — The projections from H onto each of its components are
definable in the theory IHSπ.

Proof. — Fix 1 ⩽ i0 ⩽ k and take ni0 and χi0(g) as in Fact 2.11(2). Then (see
Remark 2.12) the function Pi0 : H → H, defined as

Pi0v = ni0

|G|
∑
g∈G

χi0(g)∗π(g)v (3.1)

is a definable function in the language Lπ. Given v ∈ H, we can write v as the sum
∞∑

t=1

∑
1⩽i⩽m

v
(t)
i +

∑
m+1⩽i⩽k

vi ∈ H inf ⊕ Hfin,

where for 1 ⩽ i ⩽ m the vector v
(t)
i denotes the projection of v on the tth copy

of Wi in H inf and for m + 1 ⩽ i ⩽ k the vector vi denotes de projection of v on Vi

in Hfin. We will prove that the equation defined in (3.1) defines the projection
onto Hi0 . We will do the proof for some infinite component Hi0 of H, the proof for
a finite component of H is analogous. By definition

Pi0v = ni0

|G|
∑
g∈G

χi0(g)∗π(g)

 ∞∑
t=1

∑
1⩽i⩽m

v
(t)
i +

∑
m+1⩽i⩽k

vi


=

∞∑
t=1

∑
1⩽i⩽m

ni0

|G|
∑
g∈G

χi0(g)∗π(g)v(t)
i +

∑
m+1⩽i⩽k

ni0

|G|
∑
g∈G

χi0(g)∗π(g)vi.

Notice that we can restrict π(g) to each copy of the irreducible subrepresentations
Wi of π

π(g)v(t)
i = π(g)↾

W
(t)
i

v
(t)
i and π(g)vi = π(g)↾Wi

vi,

then using the projection pi0 given by Fact 2.11(2), we could write Pi0v as

Pi0v =
∞∑

t=1

∑
1⩽i⩽m

pi0vi +
∑

m+1⩽i⩽k

pi0vi =
∞∑

t=1
v

(t)
i0

.

We can conclude that the function Pi0 is the projection of H onto the infinite
component Hi0 of H and it is definable. □
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Theorem 3.3. — Let π be a unitary representation of G on a Hilbert space H
such that H = H inf . Then the theory IHSπ is ℵ0-categorical.

Proof. — First note that the theory IHSπ includes as part of the information
that (π(g) : g ∈ G) is a representation of G by unitary maps.

By Proposition 3.2, for each 1 ⩽ i ⩽ k the projection Pi onto Hi is definable in
the theory IHSπ. Fix some 1 ⩽ i ⩽ m, and consider the following scheme indexed
by n. To simplify the notation, the indexes t, s will range over {1, . . . , n} and the
indexes j1, j2 and j will range over {1, . . . , ni} (recall that ni is the degree of Wi):

inf
vt

max
{

max
t,j

{∣∣∣∥∥vj
t

∥∥ − 1
∣∣∣, ∥∥∥Piv

j
t − vj

t

∥∥∥}
,

max
t<s,j1⩽j2

∣∣∣〈vj1
t , vj2

s

〉∣∣∣, max
t,j1<j2

∣∣∣〈vj1
t , vj2

t

〉∣∣∣} = 0. (3.2)

In the sentence above vt denotes the set of vectors {v1
t , . . . , vni

t }. The nth sentence in
the Scheme (3.2) indicates that there are n collections of ni vectors {v1

t , . . . , vni
t }n

t=1
which are almost orthonormal and almost invariant under the projection Pi. Ob-
serve that this scheme belongs to IHSπ for any 1 ⩽ i ⩽ m, that is, for any of the
irreducible representations Wi of G appearing in H. Additionally, the sentence

sup
v

max
m+1⩽i⩽k

∥Pi(v)∥ = 0, (3.3)

indicates that the irreducible representation Wi for i ⩾ m + 1 are not represented
in (H, π).

Now let (K, ρ) |= IHSπ be separable. Since K is a model of the theory IHS, we
have that for all n ∈ N there is ε > 0, such that for j1 ⩽ j2 and j, and s < t as
above if there are vectors in K satisfying∣∣∣1 − ∥vj

t ∥2

∣∣∣ < ε and
∣∣∣〈vj1

t , vj2
s

〉∣∣∣ < ε

then (after applying Gram–Schmidt and taking a different family) there is a family
of exact witnesses for the property described in the equation. Thus we may assume
the set {v1

t , . . . , vni
t } is orthonormal to the set {v1

s , . . . , vni
s } when t ̸= s. Now, for

all n ∈ N and each 1 ⩽ i ⩽ m, we shall prove there are n orthogonal copies of Wi

in K. For each t consider the vectors

w1
t := Piv

1
t

∥Piv1
t ∥

, . . . , wni
t := Piv

ni
t

∥Piv
ni
t ∥

.

It follows from Scheme (3.2), that the set {w1
t , . . . , wni

t } forms a basis for a copy
of the irreducible representation Wi. Furthermore if s < t the set {w1

t , . . . , wni
t } is

orthogonal to the set {w1
s , . . . , wni

s }. Thus, for any irreducible representation Wi

appearing in H inf , actually we can find a countable number copies of it in K.
Moreover, by Proposition 3.2 we can build a first order sentence axiomatiz-

ing that any vector v ∈ K (or any other model of IHSπ) can be written as
v =

∑
1⩽i⩽m Piv. Therefore, since both (H, π) and (K, ρ) are separable, the

multiplicity of each Wi in K is ℵ0, and K is only composed of copies of Wi for
1 ⩽ i ⩽ m. Since both K and H contain ℵ0 copies of each irreducible representa-
tion W1, . . . , Wm, and no copy of Wi for m + 1 ⩽ i ⩽ k, the two representations are
isomorphic. □
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We can extend Theorem 3.3 to a general unitary representation π of G acting
on a separable Hilbert space H:

Corollary 3.4. — Let π be a representation of G on an infinite dimensional
Hilbert space. Then the theory IHSπ is ℵ0-categorical.

Proof. — Following the notation of Definition 3.1 associated to the model (H, π),
we get a new axiomatization by keeping Scheme (3.2) and replacing the sen-
tence (3.3) for a collections of sentences describing the dimension and multiplicity
of each irreducible representation Wi in Hfin. Fix some m + 1 ⩽ i ⩽ k, as in The-
orem 3.3, to simplify the notation, the indexes s, t will range over {1, . . . , di}, and
the index j will range over {1, . . . , ni}. Consider the following sentence from IHSπ:

inf
vt

sup
∥v∥=1

max
{

max
t,j

{∣∣∣∥∥vj
t

∥∥ − 1
∣∣∣, ∥∥∥Piv

j
t − vj

t

∥∥∥}
, max

s<t,j

∣∣∣〈vj
t , vj

s

〉∣∣∣,∥∥∥∥∥∥Piv −
di∑

t=1

ni∑
j=1

〈
vj

t , Piv
〉

vj
t

∥∥∥∥∥∥
 = 0. (3.4)

In the sentence, vt denotes the set of vectors {v1
t , . . . , vni

t }, and recall from the
beginning of the section that for each 1 + m ⩽ i ⩽ k the multiplicity of Wi in Hfin

is di, and ni is the dimension of Wi. As we shall prove below, the sentence in (3.4)
axiomatizes the presence of exactly di copies of Wi in Hfin.

Let (K, ρ) be a separable model of IHSπ, and let ε > 0. We can assume that for
each t, the family

{
v1

t , . . . , vni
t

}
given by the sentence (3.4) satisfies∣∣∥∥Piv

1
t

∥∥ − 1
∣∣ < ε, . . . , |∥Piv

ni
t ∥ − 1| < ε.

Furthermore, using that K |= IHS is ℵ0-saturated (or by choosing ε sufficiently
small), there is subspace Ki of K with dimension nidi invariant under the action
of π with Pi(Ki) = Ki. Thus by Fact 2.11 there are at least di different copies of
Wi in K. Moreover, that is the exact number of copies of Wi in K. Suppose there
is one more copy of Wi with vector basis w1, . . . , wni

, then using sentence (3.4) the
projection of each wj in the orthogonal complement of Ki is arbitrary small and
thus it should be zero.

It also follows from the proof of Theorem 3.3 that dim(Hi) = dim(Ki) = ℵ0
for all 1 ⩽ i ⩽ m, so we get dim(Hi) = dim(Ki) for all 1 ⩽ i ⩽ k and thus the
structures are isomorphic. □

Remark 3.5. — Let (K, ρ) be a model of IHSπ. Let C ⊆ K be a closed subspace.
We denote by PrC the orthogonal projection from H onto C. Let a and b be tuples
of Kn, if for each 1 ⩽ i ⩽ k we write Pi for the projection on the ith component
of K, then

qftpπ(a/C) = qftpπ(b/C) implies PrC(Pi(aj)) = PrC(Pi(bj)).

Proof. — By Proposition 3.2 each Pi is quantifier free definable, so for each
1 ⩽ i ⩽ k and each 1 ⩽ j ⩽ n we have qftpπ(a/C) = qftpπ(b/C) implies
qftp(Pi(aj)/C) = qftp(Pi(bj)/C). It follows from basic results on IHS (see for ex-
ample [6, Lemma 15.1]) that qftp(Pi(aj)/C)=qftp(Pi(bj)/C) implies PrC(Pi(aj))=
PrC(Pi(bj)). □
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Proposition 3.6. — Let π be a unitary representation of a finite group G
on an infinite dimensional Hilbert space K. Then the theory IHSπ has quantifier
elimination.

Proof. — Let (K, π) be a separable model of IHSπ. We will prove that if a and
b are arbitrary n-tuples of K such that qftpπ(a) = qftpπ(b) then tpπ(a) = tpπ(b).
Fix 1 ⩽ i0 ⩽ k and define Ki0 := Pi0(K). Additionally, let us assume without loss
of generality that a and b are non-trivial arbitrary n-tuples of Ki0 and define

Ai0 :=
⋃

g∈G

{π(g)a1, . . . , π(g)an} and Bi0 :=
⋃

g∈G

{π(g)b1, . . . , π(g)bn}.

Thus, by assumption ⟨Ai0⟩ and ⟨Bi0⟩ (the span of the corresponding sets) are non-
trivial subspaces of Ki0 .

Claim 3.7. — There is an Lπ-isomorphism sending ⟨Ai0⟩ to ⟨Bi0⟩.

Proof. — Since ⟨Ai0⟩ and ⟨Bi0⟩ are subspaces of Ki0 closed under the action
of π, by Fact 2.11(2) we can decompose these finite dimensional vector spaces
as the direct sum of copies of the irreducible representation Wi0 . Notice that
qftpπ(a) = qftpπ(b) implies

⟨π(h)ai, π(g)aj⟩ = ⟨π(h)bi, π(g)bj⟩ for all 1 ⩽ i, j ⩽ n and g, h ∈ G, (3.5)
and recall that the linear independence of one vector from others is a quantifier free
sentence expressible in the language of Hilbert spaces. Then, these inner product
equations imply that if we take a subset of Ai0 which forms a basis for ⟨Ai0⟩ then
the corresponding subset in Bi0 forms a basis of ⟨Bi0⟩, hence dim⟨Ai0⟩ = dim⟨Bi0⟩.
Then we can write

⟨Ai0⟩ ∼= UA
1 ⊕ · · · ⊕ UA

ℓ and ⟨Bi0⟩ ∼= UB
1 ⊕ · · · ⊕ UB

ℓ ,

for some 1 ⩽ ℓ, where each term of the sum is a copy of Wi0 where the sum for
⟨Bi0⟩ comes from the map sending Ai0 to Bi0 . In fact, for all 1 ⩽ j ⩽ n and all
1 ⩽ ℓ′ ⩽ ℓ we have that ∥∥∥PrUA

ℓ′
aj

∥∥∥ =
∥∥∥PrUB

ℓ′
bj

∥∥∥
is implied by qftpπ(a) = qftpπ(b) and the way we constructed the sum. Now, take
any of the copies of Wi0 in ⟨Ai0⟩, namely UA

ℓ′ . As above, if we choose a basis of UA
ℓ′

from ⟨Ai0⟩ its corresponding subset of ⟨Bi0⟩ give us a basis for UB
ℓ′ and the action

by the maps (π(g) : g ∈ G) is compatible with this correspondence.
Then the bijection ⟨Ai0⟩ → ⟨Bi0⟩ induced by the bijection Ai0 → Bi0 is an Lπ-

isomorphism between ⟨Ai0⟩ and ⟨Bi0⟩. □

Notice that, if we start with a and b as general tuples of K, we can apply, for each
i ⩽ k, the above construction to obtain a map fi : ⟨Pi(a)⟩ → ⟨Pi(b)⟩ that respects
the action of π. Putting the fi together into a single function f one constructs a
Lπ-isomorphism f between the closed subspaces

A :=
〈 ⋃

g∈G

{π(g)a1, . . . , π(g)an}

〉
and B :=

〈 ⋃
g∈G

{π(g)b1, . . . , π(g)bn}

〉
.

sending a to b. Now we extend f to an Lπ isomorphism ϕ over K. Observe that we
can write K ∼= A ⊕ A⊥ and K ∼= B ⊕ B⊥. Moreover, both A⊥ and B⊥ are models
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of Tπ′ , where π′ is the restriction of π to A⊥, by Corollary 3.4 we have A⊥ ∼= B⊥

as Lπ′ -structures. Thus, there is a Lπ-isomorphism ϕ : K → K sending a to b. □

Corollary 3.8. — Consider the representation formed by the sum of count-
able copies of the left regular representation, denoted by ∞λG, which acts on the
separable Hilbert space ∞ℓ2(G). Then, for any unitary representation π, we can
embed a separable model (H, π) of IHSπ into (∞ℓ2(G), ∞λG) and the structure
(∞ℓ2(G), ∞λG) is existentially closed.

Proof. — Let (H, π) be as in the hypothesis. By Fact 2.8 all irreducible repre-
sentations of G appear in (∞ℓ2(G), ∞λG) with infinite multiplicity. In particular,
each of the irreducible representations used in (H, π) (with finite or infinite mul-
tiplicity) appears in (∞ℓ2(G), ∞λG) and thus we can embed the structure (H, π)
into (∞ℓ2(G), ∞λG).

Now we show the structure (∞ℓ2(G), ∞λG) is existentially closed. Assume that
(H, π) ⩾ (∞ℓ2(G), ∞λG) is a separable superstructure. As we mentioned above,
we can find a copy (∞ℓ2(G)′, ∞λ′

G) extending (H, π) and thus also extending
(∞ℓ2(G), ∞λG). By quantifier elimination, (∞ℓ2(G), ∞λG) ≼ (∞ℓ2(G)′, ∞λ′

G)
and thus all existential witnesses in (H, π) have an approximate witness inside
∞ℓ2(G). □

This gives another proof that Th(∞ℓ2(G), ∞λG) is the model companion of the
theory of representations of G (compare with [9, Theorem 2.8]).

Theorem 3.9. — Let π be a unitary representation of a finite group G in an
infinite dimensional Hilbert space. Then the theory IHSπ is ℵ0-stable.

Proof. — Let (K, ρ) be a separable model of IHSπ, by Corollary 3.4 we can
decompose K = K inf ⊕ Kfin as in Definition 3.1, then

K ∼= (K1 ⊕ · · · ⊕ Km) ⊕ (Vm+1 ⊕ · · · ⊕ Vk).

To show that the theory IHSπ is ℵ0-stable, it is sufficent to take E ⊆ K countable
such that E = K and prove that the density character ∥(S1(E), d)∥ ⩽ ℵ0. Let us
consider (K̂, ρ̂) ≽ (K, ρ) the superstructure defined as

K̂ := K
⊕

W 0
1 ⊕ · · · ⊕ W 0

m,

where W 0
1 , . . . , W 0

m are copies of the irreducible representations W1, . . . , Wm in K inf

respectively and ρ̂ is the direct sum of the homomorphism from G to W 0
1 ⊕· · ·⊕W 0

m

with ρ.
Let (F, τ) ≽ (K, ρ) be an arbitrary separable elemental superstructure. By ℵ0-

categoricity of the theory IHSπ, we can write F ∼= F inf ⊕ F fin and notice that
Kfin = F fin, then

F ∼= F1 ⊕ · · · ⊕ Fm

⊕
F fin

and each of the spaces Fi with 1 ⩽ i ⩽ m has dimensions ℵ0. Now, for each
1 ⩽ i ⩽ k let us define Pri

E
: F → Fi ∩ E, as the projection of F onto Fi ∩ E

defined by Pri
E

= PrEPi, where PrE is the orthogonal projection onto the closed
subspace E, and Pi : F → Fi is the projection on the ith component of F (defined
as in Proposition 3.2). Now, take v ∈ F , by Proposition 3.6 the theory IHSπ has
quantifier elimination and the type tpπ(v/E) is determined by the elements PrE(v)
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and the types {tpπ(Piv −Pri
E

v) : 1 ⩽ i ⩽ m}, i.e. the types of elements orthogonal
to E that lie in the different components of F inf . Since E = K and Kfin = F fin,
and for all m + 1 ⩽ i ⩽ k we have Pri

E
v ∈ Ki. Thus we only need to realize in

(K̂, ρ̂) the types {tpπ(Piv − Pri
E

v) : 1 ⩽ i ⩽ m} in a space orthogonal to E.
Fix an index 1 ⩽ i ⩽ m and set wi := Piv − Pri

E
v. If wi = 0 there is noth-

ing to prove. Otherwise ⟨
⋃

g∈G{τ(g)wi}⟩ is a copy of Wi. Then there exists an
isomorphism

fi :
〈 ⋃

g∈G

{τ(g)wi}

〉
−→ W 0

i ⊆ K̂,

respecting the action of the operators induced by τ and ρ̂. Repeating the argument
for all 1 ⩽ i ⩽ m, we define

v̂ :=
(
PrE(v) + (f1(w1) + · · · + fm(wm)

)
∈ K̂.

Then we have tpπ(v̂/E) = tpπ(v/E) and the new realization of the type belongs to
(K̂, ρ̂) which is separable, hence ∥(S1(E), d)∥ ⩽ ℵ0. □

Now we characterize algebraic closure in models of IHSπ and we will also give a
natural description of non-forking. We work in (H, π) a κ-saturated and κ-strongly
homogeneous model of IHSπ for some uncountable inaccessible cardinal κ. We say
that A ⊂ H is small if |A| < κ, and if C ⊆ H is a closed subspace, we denote
by PrC the orthogonal projection of H onto C. Additionally, if A ⊆ H we write
acl(A) and dcl(A) for the algebraic and definable closures of A in the language Lπ,
respectively, and cl(A) for the topological closure.

Proposition 3.10. — Let A ⊂ H be small. Then

acl(A) = cl
(〈

{π(g)(a) : a ∈ A, g ∈ G} ∪ Hfin〉)
.

Proof.
“⊇”. — Notice that, for each m + 1 ⩽ i ⩽ k the component Vi of H is finite-

dimensional, and by Proposition 3.2 the projection Pi : H → Vi is definable in the
theory IHSπ. Then, the unitary ball of Vi is definable over ∅ and compact and thus
algebraic over ∅. Hence Hfin ⊆ acl(A). Clearly we also have {π(g)(a) : a ∈ A} ⊆
acl(A) and thus the containment follows.

“⊆”. — Now, set E := cl(⟨{π(a) : a ∈ A, g ∈ G} ∪ Hfin⟩) and suppose v ̸∈ E,
then ∥PrE⊥(v)∥ > 0. By hypothesis E⊥ ⊂ H inf , so there exists 1 ⩽ j ⩽ m such
that ∥Pj(PrE⊥ v)∥ > 0. Since A is a small subset of H, so is E. Since Hj is
large, the subspace Hj ∩ E⊥ has infinite dimension. Thus, we can find a sequence
{vj

t }∞
t=1 ⊂ Hj ∩ E⊥ of orthogonal vectors with norm ∥Pj(PrE⊥ v)∥, such that

tp

vj
t +

m∑
i=1,i̸=j

Pi(PrE⊥ v) + PrE v/A

 = tp(v/A) for all t ⩾ 1.

The elements of the sequence {vj
t +

∑m
i=1,i̸=j Pi(PrE⊥ v) + PrE v}∞

t=1 are at the
same positive distance one from the other and thus v ̸∈ acl(A). □

Observation 3.11. — It follows from the previous proof that for A ⊂ H be
small we have dcl(A) = cl(⟨{π(g)(a) : a ∈ A, g ∈ G}⟩).
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For the rest of this section, whenever A ⊂ H, we write A for the algebraic closure
of A in the language Lπ. To deal with non-forking, we introduce an abstract notion
of independence and then show it coincides with non-forking. Our approach follows
the argument for a single unitary operator presented in [1]. A similar characteri-
zation was used in [9, Section 3] to show that that IHSπ is superstable when G is
countable and the expansion is existentially closed. Instead of repeating again all
of the steps, we will prove the key steps that make the arguments work.

Definition 3.12. — Let (H, π) |= IHSπ be κ-saturated and κ-strongly homo-
geneous. Let a⃗ = (a1, . . . , an) ∈ Hn, and let A, B and C ⊂ H be small. We say
that a⃗ is ∗-independent from B over C if for all 1 ⩽ j ⩽ n and 1 ⩽ i ⩽ k we
have PrB∪C(Pi(aj)) = PrC(Pi(aj)). If a⃗ is ∗-independent from B over C we write
a⃗ |∗⌣C B. Additionally, if all finite subsets a⃗ of A are such that a⃗ |∗⌣C B, we say
that A is ∗-independent from B over C and we write A |∗⌣C B.

Lemma 3.13. — Let C ⊆ H be such that C = C and let v ∈ H. Then, for all
1 ⩽ i ⩽ k we have Pi(PrC(v)) = PrC(Pi(v)).

Proof. — Notice that for all v ∈ H we can write v = v1 + v2, where v1 ∈ C and
v2 ∈ C⊥. Let g ∈ G, then for all c ∈ C we have

π(g)c ∈ C and ⟨π(g)c, π(g)v2⟩ = ⟨c, v2⟩ = 0.

Since π(g) acts in C as a bijection, we obtain π(g)v2 ∈ C⊥. Thus,

PrC π(g)v = π(g)v1 = π(g) PrC v,

this means that PrC and π(g) commute for all g ∈ G. Since the projection Pi is a
linear combination of the operators {π(g)}g∈G (see Proposition 3.2), it follows that
PrC commutes with the projection Pi for all 1 ⩽ i ⩽ k. □

The previous result will allow us to characterize independence over closed sets
without using the projections Pi over the components, just as was done in [9,
Section 3]:

Corollary 3.14. — Let a⃗ = (a1, . . . , an) ∈ Hn, and let B, C ⊂ H be small.
Then, a⃗ |∗⌣C B if and only if for each 1 ⩽ j ⩽ n, we have PrB∪C aj = PrC aj .

Proof. — Suppose that a⃗ |∗⌣C B. Then by Lemma 3.13 for all 1 ⩽ j ⩽ n and
1 ⩽ i ⩽ k we have

PrB∪C Piaj = PrC Piaj if and only if Pi PrB∪C aj = Pi PrC aj .

Also, for each v ∈ H we have that v =
∑k

i=1 Piv. Then, for all 1 ⩽ j ⩽ n, we have
the following equivalence

Pi PrB∪C aj = Pi PrC aj

for each 1 ⩽ i ⩽ k if and only if PrB∪C aj = PrC aj . □

Proposition 3.15 (Triviality). — Let a⃗ = (a1, . . . , an) ∈ Hn and b⃗ =
(b1, . . . , bℓ) ∈ Hℓ, and let C ⊂ H be small. Then, a⃗ |∗⌣C b⃗ if and only if for
all 1 ⩽ i ⩽ k, 1 ⩽ j1 ⩽ n and 1 ⩽ j2 ⩽ ℓ we have Pi(aj1) |∗⌣C Pi(bj2).
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Proof. — Assume that a⃗ |∗⌣C b⃗, then for all 1 ⩽ i ⩽ k and all 1 ⩽ j1 ⩽ n we
have Pi(Pr{b1,...,bℓ}∪C

(aj1)) = Pi(PrC(aj1)). Since

C ⊆ C ∪ {Pibj2} ⊆ C ∪ {bj2} ⊆ C ∪ {b1, . . . , bℓ},

we have Pi(Pr
C∪{Pibj2 }(aj1)) = Pi(PrC(aj1)). By Lemma 3.13, we have Pi(aj1) |∗⌣C

Pm(bj2).
Now, assume for all 1 ⩽ i ⩽ k, 1 ⩽ j1 ⩽ n and 1 ⩽ j2 ⩽ ℓ we have that

Piaj1 |∗⌣C Pibj2 . Let us write Piaj1 = PrC(Piaj1)+Pr
C

⊥(Piaj1). By hypothesis the
projection of Piaj1 over Pr

C
⊥(Pibj2) is equal to 0. Then Pr

C
⊥(Piaj1) is orthogonal

to Pibj2 . Similarly, for any g ∈ G we will obtain that Pr
C

⊥(Piaj1) is orthogonal to
π(g)(Pibj2). This implies that Pr

C
⊥(Piaj1)⊥C ∪ {Pibj2}. The above orthogonality

relation holds for each bj2 with 1 ⩽ j2 ⩽ ℓ, making the projection of Pr
C

⊥(Piaj1)
on C ∪ {Pib1, . . . , Pibℓ} equal to 0. Then we obtain

PrC(Piaj1) = Pr
C∪{Pib1,...,Pibℓ}(Piaj1).

Observe that the ith component Hi of H is closed under the action of the operators
{π(g)}g∈G and subspace projections. Then

Pr
C∪{Pib1,...,Pibℓ}(Piaj1) = Pr

C∪{b1,...,bℓ}(Piaj1).

Thus, PrC(Piaj1) = Pr
C∪{b1,...,bℓ}(Piaj1) for all 1 ⩽ i ⩽ k and 1 ⩽ j1 ⩽ n. □

Theorem 3.16. — Let (K, π) |= IHSπ be κ-saturated. Then the notion ∗-inde-
pendence agrees with non-forking and non-forking is trivial.

Proof. — It is enough to show that ∗-independence satisfies finite character,
local character, transitivity, symmetry, invariance, existence, and stationarity. We
check finite character, the other properties can be easily checked using the approach
from [1].

Finite character: let a⃗ = (a1, . . . , an) ∈ Kn be a finite tuple, and let B, C ⊂ K
be small. We prove that if a⃗ |∗⌣C B0 for all finite B0 ⊆ B then a⃗ |∗⌣C B. Note that
if a⃗ |∗⌣C B0, then PrB0∪C(aj) = PrC(aj) for all 1 ⩽ j ⩽ n. If this happens for all
finite B0 ⊆ B then PrB∪C(aj) = PrC(aj) for all 1 ⩽ j ⩽ n as desired.

Finally, triviality of forking follows from the previous result and Proposition 3.15.
□

There are some easy applications of our characterization of non-forking, among
them:

Proposition 3.17. — The theory IHSπ is non-multidimensional.

Proof. — It suffices to prove that any non-algebraic stationary type is not or-
thogonal to a type over ∅. Let a ∈ H, let C ⊆ H be small and algebraically closed.
Consider p = tp(a/C) and q = tp(a − PrC(a)/∅). Then, if p is non-algebraic, we
have a − PrC(a) ̸= 0 and clearly a − PrC(a) ̸ |∗⌣C a. □

We can classify the models of IHSπ in terms of the density character of the
irreducible representations that appear in the model. This gives a classification
of models of IHSπ in terms of finitely many cardinals. We will now study more
“geometric complexity” aspects of the theory. For this we need:
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Definition 3.18. — Let (H, π) be a separable model of IHSπ, and let K ⊆ H
be a closed subspace, which is invariant under the action of π and is such that
(H, π) ≽ (K, π ↾K). Let P be the predicate on H that measures the distance to the
subspace K. Then, if (H, π) is ℵ0-saturated over (K, π ↾K) and (K, π ↾K) is ℵ0-
saturated, we call the pair of structures ((H, π), P ) in the language Lπ ∪{P} a belle
paire. We write TπP for the theory of belles paires of models of IHSπ. Sometimes
instead of writing ((H, π), P ) we will abuse notation and write ((H, π), K) for the
same structure.

Belle paires were first defined in first order by Poizat in [13]. There are many
applications of belles paires, among them the work of the first named author of the
paper with Ben Yaacov and Henson around the notion of the topology of conver-
gence of canonical bases [5]. Recall from [5] that a stable theory is SFB (strongly
finitely based) if the topology of convergence of canonical bases coincides with the
distance topology on the space of types over models. This notion is a reasonable
continuous analogue to the notion of 1-basedness for stable first order theories, for
more details see [5]. In this paper we will need belle paires for the following result:

Fact 3.19 ([5, Theorem 3.10]). — Let T be any stable continuous theory. Then
TP is ℵ0-categorical if and only if T is ℵ0-categorical and SFB.

Our next goal is to show that IHSπ has SFB. We already know IHSπ is ℵ0-
categorical and stable, so by Fact 3.19, it remains to prove that TπP is ℵ0-categorical.
In order to show this, let (H, π), (K, ρ) be separable models of IHSπ, by Corol-
lary 3.4, we have a complete description of these models in terms of the invariant
subspaces, so we can write

H = H inf ⊕ Hfin where Hfin = Vm+1 ⊕ · · · ⊕ Vk,

and

K = K inf ⊕ Kfin where Kfin = Vm+1 ⊕ · · · ⊕ Vk.

Notice that the finite dimensional components of the models are isomorphic as
representations of G in finite dimensional Hilbert spaces.

Lemma 3.20. — Let (H, π) ≽ (K, ρ) and assume ((H, π), K) is a separable
belle paire of models of IHSπ. Write K⊥ for the subspace K⊥ ∩ H of H, which is
invariant under the action of π. Then,(

K⊥, π ↾K⊥
) ∼=

(
H inf , π↾Hinf

)
.

Proof. — Recall that the predicate P (v) = minw∈K ∥v − w∥ measures the dis-
tance to K. Then PrK(v) = argmin P (v) (the projection of v in the subspace K) is
definible in the extended language Lπ ∪ {P} (see for example [10, Proposition 2.4]
for a proof). It is also easy to see that the distance from a vector v to K⊥ is given
by

√
∥v∥2 − P (v)2 and so we can quantify over K⊥ and we get that the projection

over K⊥ is definable as well. The space PrK(H)⊥ = K⊥ only has copies of the
irreducible representations of G appearing in H inf . Moreover, since (H, π) ≽ (K, ρ)
is an ℵ0-saturated extension, each irreducible representation appearing in H inf also
appears in K⊥ and has dimension equal to ℵ0. From this we get the desired iso-
morphism. □
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Remark 3.21. — Notice that since we can quantify over K⊥, we can express that
dim(Hi) ∩ K⊥ ⩾ ℵ0 for 1 ⩽ i ⩽ m as a scheme of sentences that belong TπP .

Theorem 3.22. — The theory of belle paires of IHSπ is ℵ0-categorical.

Proof. — Let ((K1, ρ), K2) and ((H1, π), H2) be two separable models of the
theory TπP . Then, by Lemma 3.20 and Remark 3.21 we have that (K⊥

2 , ρ↾K⊥
2

) and
(H⊥

2 , π↾H⊥
2

) are isomorphic as representations. Additionally, the models (K2, ρ↾K2)
and (H2, π↾H2) are isomorphic as they are separable models of IHSπ. Then, the
expansions ((K1, ρ), K2) and ((H1, π), H2) are also isomorphic. □

Corollary 3.23. — The theory IHSπ has SFB.

Proof. — The result follows from Fact 3.19 and Theorem 3.22. □

One can change perspective and follow the ideas from [15] and consider actions
by compact groups instead of finite groups and generalize results of G-actions to
that setting. A natural starting point would be:

Question 3.24. — Assume G is a compact group. Can one characterize again
the existentially closed expansions in terms of the left regular representations? Do
irreducible representations play the same role in this setting as they did for finite
groups?

4. Hilbert spaces expanded by a representation of infinite groups

In this section G will denote a discrete infinite countable group and we will
fix {gn}n∈N an enumeration of G. Additionally, H will be an infinite dimensional
Hilbert space, and π : G → U(H) will denote a unitary representation of G. In this
setting, we first give some examples where the theory IHSπ is either ℵ0-categorical
or only ℵ0-categorical up to perturbations. Then, we prove the general result for
IHSπ, which states that regardless of the nature of G or π, the theory IHSπ is ℵ0-
categorical up to perturbations. Finally, we prove that when we also assume that
IHSπ is model complete, then IHSπ is ℵ0-stable up to perturbations.

Example 4.1. — Suppose that π : G → U(H) has finite image. Then, the isomor-
phism G/ker(π) ∼= Im(π), implies that the unitary irreducible representations of π
are in correspondence with the irreducible representations of the group G/ker(π) .
In this case, we can apply the results from the previous section and by Theorem 3.3
the theory IHSπ is ℵ0-categorical.

On the other hand, having nonempty continuous spectrum (see Definition 2.13
and the corresponding notation) in one of the operators belonging to the represen-
tation of G over H allows us to construct two separable non-isomorphic models.

Proposition 4.2. — Let (H1, π1) be a separable model of IHSπ. Suppose that
there is g ∈ G such that σ(π1(g)) \ σp(π1(g)) ̸= ∅. Then the theory IHSπ is not
ℵ0-categorical.

Proof. — Let g ∈ G be as in the hypothesis. By Fact 2.14 there is λ ∈ σc(π(g))
and thus we can find a sequence {vn}n∈N ⊆ H of normal vectors such that

lim
n→∞

∥π1(g)vn − λvn∥2 = 0.
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Let F be a non-principal ultrafilter over N and define M := Πn,F (H1, π1). Then,
the element [(vn)n] is normal and satisfies

πM(g)[(vn)n] = [(π1(g)vn)n] = λ[(vn)n].

Thus, λ ∈ σp(πM(g)). By Löwenheim–Skolem there exists a separable model
(H2, π2) of IHSπ where λ is in the punctual spectrum of π2(g). Then the rep-
resentations (H1, π1) and (H2, π2) of G are not isomorphic, so the theory is not
ℵ0-categorical. □

Modulo perturbations, we get a simpler picture that does not depend on the
spectrum of the operators π(gn). We start with a technical lemma:

Lemma 4.3. — Let (H, π) be a model of IHSπ, and for each gn ∈ G define
Un := π(gn). Also, let A be the C∗-algebra generated by {Un}n∈N. Then all the
operators in A are definable in the language Lπ.

Proof. — We denote by A0 the ∗-algebra generated by {Un}n∈N. Since the
product of Uk with Um is in {Un}n∈N, any element T ∈ A0 can be expressed
as T =

∑n
i=1 λiUi and thus it is definable in Lπ. Observe that if we take the

topological closure of A0 in the operator topology, we obtain A. Since the topology
in B(H) is the generated by the norm:

∥T∥ = sup
∥x∥⩽1

∥Tx∥ where T ∈ B(H),

if T ∈ A, then T is the limit of sums of the form Tm =
∑m

i=1 λiUi. Thus, we can
write T =

∑∞
i=1 λiUi which satisfy for every x, y in the unit ball of H the following∣∣∥Tmx − y∥ − ∥Tx − y∥

∣∣ ⩽ ∥Tx − Tmx∥ ⩽ ∥T − Tm∥.

Hence the sequence {∥Tmx − y∥}m∈N converges uniformly to ∥Tx − y∥ in the unit
ball of H. Thus, the function T : H → H is definable. □

For the next results, recall Definition 2.26 and Remark 2.27.

Theorem 4.4. — The theory IHSπ is ℵ0-categorical up to perturbations.

Proof. — Let (H1, π1) and (H2, π2) be separable models of IHSπ. For each n ∈ N
define Un := π1(gn) and Vn := π2(gn), also we denote by ϕ the ∗-morphism induced
by the assignment ϕ(Un) = Vn. Let A and B be the C∗-algebras generated by
{Un}n∈N and {Vn}n∈N respectively, then the extension Φ of ϕ to A is a representa-
tion of A in B(H2) with image equal to B. We are dealing with two representations
of A, first idA the representation that sends each T ∈ A to itself, and Φ, the rep-
resentation induced by ϕ. If we prove that for all T ∈ A we have that rank(T ) =
rank(Φ(T )), then by Fact 2.24 the representaions idA and Φ are approximately
unitarily equivalent.

Recall that in Lemma 4.3 we proved that any T ∈ A is definable in the lan-
guage Lπ. We will now prove that the rank of the operator T is coded in the
theory IHSπ.
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Case 1: Suppose rank(T ) = m. — Then, the sentence

inf
v1...vm

sup
v

max
{

max
i⩽m

|∥Tvi∥ − 1|, max
i<j⩽m

|⟨Tvi, T vj⟩| ,

∥∥Tv − (PrT v1 v + · · · + PrT vm
v)

∥∥}
= 0 (4.1)

is part of the theory IHSπ, and it axiomatizes rank(T ) = m.
Case 2: Suppose rank(T ) = ℵ0. — Consider the following scheme indexed by

m ∈ N>0

inf
v1...vm

max
{

max
i⩽m

|∥Tvi∥ − 1|, max
i<j⩽m

|⟨Tvi, T vj⟩|
}

= 0. (4.2)

Then, the scheme (4.2) is part of the theory IHSπ, and axiomatizes rank(T ) = ∞.
The sentence (4.2) and the scheme (4.1) imply that if T ∈ A and m∈{0, 1, . . . , ℵ0}

is such that rank(T ) = m, then rank(Φ(T )) = m, because Φ(T ) is the interpreta-
tion of T in (H2, π2) which models IHSπ. Hence idA and Φ are AUE, implying
that (H1, π1) and (H2, π2) are approximately isomorphic, thus the theory IHSπ is
ℵ0-categorical up to perturbations. □

Theorem 4.5. — Assume the theory IHSπ is model-complete. Then the theory
IHSπ is ℵ0-stable up to perturbations.

Proof. — Let (H, π) be a separable model of IHSπ and let A be the C∗-algebra
generated by {π(gn)}n∈N. By Lemma 2.25 we can write

(H, A) ∼=
(
Hc ⊕ H⊥

c , Ac ⊕ A⊥
c

)
,

where the subalgebra Ac are composed only by compact operators, and the sub-
algebra A⊥

c has no compact operators. Also, Ac and A⊥
c act over Hc and H⊥

c

respectively. The algebra Ac is the topological closure of the ∗-algebra generated
by the family

{PrHc
π(gn)↾Hc

}n∈N .

In the same way, the algebra A⊥
c is the topological closure of the ∗-algebra generated

by the family {
PrH⊥

c
π(gn)↾H⊥

c

}
n∈N .

Now, if we write π⊥
c for the restriction of π to H⊥

c , we can define the representation
(H1, τ) =

⊕
i∈ω(H⊥

c , π⊥
c ). This representation is a Hilbert space with an action

where all operators have rank ℵ0. Finally let (H ⊕ H1, π ⊕ τ) be the representation
coming from the direct sum.

Claim 1: (H ⊕ H1, π ⊕ τ) |= IHSπ. — Let B the C∗-algebra generated by
the operators {π ⊕ τ(gn)}n∈N. We denote by ϕ the ∗-morphism induced by the
assignment ϕ(π(gn)) = π ⊕ τ(gn). The extension Φ of ϕ to A obtained by linearity
and continuity is a representation of A in B(H ⊕ H1) whose image is B. In this
setting we have again two representations of A, first idA the representation that
sends each T ∈ A to itself, and Φ. The subalgebra of compact operators of both
algebras A and B, appear in the copy of (Hc, πc) inside each sum, and by Fact 2.23
they are isomorphic; the non-compact operators, which appear in (H⊥

c , π⊥
c ) and in

(H1, τ) all have rank ℵ0. It follows by Fact 2.24 that the representations (H, π)
and (H ⊕ H1, π ⊕ τ) are AUE and thus satisfy the same theory IHSπ.
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Since IHSπ is model complete, we have
(H, π) ≼ (H ⊕ H1, π ⊕ τ).

We will prove that the elementary superstructure (H ⊕ H1, π ⊕ τ) is ℵ0-saturated
up to perturbations over (H, π) and thus, since (H, π) was any separable model of
IHSπ, this shows that IHSπ is ℵ0-stable up to perturbations.

Let (K, ρ) ≽ (H, π) be an elementary separable superstructure. As in Claim 1,
we also have that (K ⊕ H1, ρ ⊕ τ) |= IHSπ and since IHSπ is model-complete,
(K, ρ) ≼ (K ⊕H1, ρ⊕τ). By construction of (K ⊕H1, ρ⊕τ), we can write K ⊕H1 ∼=
H ⊕ H⊥ and ρ ⊕ τ ∼= π ⊕ ρ′, where ρ′ = ρ↾H⊥ . By construction, the C∗-algebras
induced by the representations τ and ρ′ over H1 and H⊥ respectively, are free of
compact operators. We get again using Fact 2.24 that these two representations are
approximately unitarily equivalent and so for every ε > 0 there is a unitary map
Oε : H1 → H⊥ such that limε→0∥π2(g) − Oεπ1(g)O∗

ε∥ = 0 for each g ∈ G. Then
for all ε > 0 we have the following diagram

(H ⊕ H1, π ⊕ τ)
(
H ⊕ H⊥, π ⊕ ρ′)id ⊕O∗

εoo

(H, π)

⪯

OO

⪯
// (K, ρ)

⪯

OO

where the map id is the identity map over H. □

Observation 4.6. — Let G be a finite group, and let π be a representation of G
on an infinite dimensional Hilbert space H. Following the notation of Section 3
we can write H = Hfin ⊕ H inf . Using the notation from Theorem 4.5, we have
Hc = Hfin and H⊥

c = H inf .

Example 4.7. — Let G be a countable amenable group, and consider
Th(∞ℓ2(G), ∞λG). By [9, Theorem 2.8] this theory is the model companion of
the theory of G-representations and thus it is model complete. By Theorem 4.5 we
get that Th(∞ℓ2(G), ∞λG) is ℵ0-stable up to perturbations; it was already known
by [9, Section 3] that it is superstable.

The special case where G = Z was considered in [8] and the model companion
was characterized as the collection of expansions (H, τ(n) : n ∈ Z) where the
spectrum of τ(1) is S1. In [4] it was proved that this expansion is ℵ0-stable up to
perturbations, a special case of Theorem 4.5.

Acknowledgments

The authors would like to thank Tomás Ibarlucía and Xavier Caicedo for valuable
feedback as well as the referee for helping us improve the presentation of the results.

References
[1] Camilo Argoty and Alexander Berenstein. Hilbert spaces expanded with a unitary operator.

Math. Log. Q., 55(1):37–50, 2009.
[2] Itaï Ben Yaacov. On perturbations of continuous structures. J. Math. Log., 8(2):225–249,

2008.
[3] Itaï Ben Yaacov. Modular functionals and perturbations of Nakano spaces. J. Log. Anal., 1:

article no. 1 (42 pages), 2009.



54 A. Berenstein & J. Perez

[4] Itaï Ben Yaacov and Alexander Berenstein. On perturbations of Hilbert spaces and probability
algebras with a generic automorphism. J. Log. Anal., 1: article no. 7 (18 pages), 2009.

[5] Itaï Ben Yaacov, Alexander Berenstein, and C. Ward Henson. Almost indiscernible sequences
and convergence of canonical bases. J. Symb. Log., 79(2):460–484, 2014.

[6] Itaï Ben Yaacov, Alexander Berenstein, C. Ward Henson, and Alexander Usvyatsov. Model
theory for metric structures. In Model theory with applications to algebra and analysis. Vol. 2,
volume 350 of London Mathematical Society Lecture Note Series, pages 315–427. Cambridge
University Press, 2008.

[7] Itaï Ben Yaacov and Alexander Usvyatsov. Continuous first order logic and local stability.
Trans. Am. Math. Soc., 362(10):5213–5259, 2010.

[8] Itaï Ben Yaacov, Alexander Usvyatsov, and Moshe Zadka. Generic automorphism of a hilbert
space. 2008.

[9] Alexander Berenstein. Hilbert spaces with generic groups of automorphisms. Arch. Math.
Logic, 46(3-4):289–299, 2007.

[10] Alexander Berenstein, Tapani Hyttinen, and Andrés Villaveces. Hilbert spaces with generic
predicates. Rev. Colomb. Mat., 52(1):107–130, 2018.

[11] Kenneth R. Davidson. C∗-algebras by example, volume 6 of Fields Institute Monographs.
American Mathematical Society, 1996.

[12] Arch W. Naylor and George R. Sell. Linear operator theory in engineering and science,
volume 40 of Applied Mathematical Sciences. Springer, 1982. Reprint of the 1971 original,
publ. by Holt, Rinehart & Winston, Inc.

[13] Bruno Poizat. On perturbations of continuous structures [Paires de structures stables].
J. Symb. Log., 48:239–249, 1983.

[14] Jean-Pierre Serre. Linear representations of finite groups, volume 42 of Graduate Texts in
Mathematics. Springer, 1977. Translated from the French by Leonard L. Scott.

[15] Itaï Ben Yaacov and Isaac Goldbring. Unitary representations of locally compact groups as
metric structures. Notre Dame J. Formal Logic, 64(2):159–172, 2023.

Manuscript received 28th January 2025,
revised 28th May 2025,
accepted 25th June 2025.

Alexander BERENSTEIN
Universidad de los Andes, Cra 1 No 18A-12, Bogotá, Colombia
aberenst@uniandes.edu.co
Juan PEREZ
Université de Mons, Place du Parc 20, 7000 Mons, Belgique
jm.perezo@uniandes.edu.co

mailto:aberenst@uniandes.edu.co
mailto:jm.perezo@uniandes.edu.co

	1. Introduction
	2. Background on operator theory and representation theory
	2.1. Representation theory of finite groups on linear groups
	2.2. Operator theory and C*̂-algebras

	3. Hilbert spaces expanded by a representation of a finite group G
	4. Hilbert spaces expanded by a representation of infinite groups
	Acknowledgments
	References

