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MODEL THEORY OF HILBERT SPACES WITH A DISCRETE
GROUP ACTION

ALEXANDER BERENSTEIN AND JUAN PEREZ

Abstract. In this paper we study expansions of infinite dimensional Hilbert spaces with a
unitary representation of a discrete countable group. When the group is finite, we prove the
theory of the corresponding expansion, regardless if it is existentially closed, has quantifier
elimination, is Np-categorical, Rp-stable and SFB. On the other hand, when the group in-
volved is countably infinite, the theory of the Hilbert space expanded by the representation
of this group is Wg-categorical up to perturbations. Additionally, when the expansion is
model complete, we prove that it is Ng-stable up to perturbations.

1. INTRODUCTION

In this paper we work on model theoretic aspects of the expansion of a Hilbert
space by a unitary representation of a countable discrete group. A unitary rep-
resentation of a group G in a Hilbert space H is defined as an action of G on H
by elements of the group of unitary maps, denoted by U(H). In other words, a
representation is given by a homomorphism 7 : G — U(H), where the action of
g € G on v € H is denoted by 7(g)v.

We treat Hilbert spaces as continuous structures in the language £ = {0, —, 2,
%, e : 0 € 2rQ}, which allows to axiomatize Hilbert spaces as a universal theory
(the proof is a small modification of the argument in [3], the proof in [3] deals with
real Hilbert spaces where one omits the family {e¢'? : € 27Q} and for the complex
case, one usually only includes i = €/"/2) and in this language the theory has
quantifier elimination. To deal with expansions by a group of unitary maps, we
add a unary function symbol for each element g of the group and we interpret it
as 7(g).

There are several papers that deal with similar expansions. For instance, expan-
sions of a Hilbert space with a single automorphism were studied in [8], showing
that the existentially closed models correspond to expansions by a unitary map
with spectrum S'. Moreover, it is also proved that the expansion is superstable
but not Rg-stable. In [9] it is proved that if G is amenable and countable, then
a Hilbert space H expanded by a countable number of copies of the left regular
representation of G is existentially closed. It is also proved that this class of expan-
sions has a model companion which is existentially axiomatizable. Furthermore,
when G is countable, this model companion is superstable. The theory of a Hilbert
space expanded by a single unitary operator with countable spectrum is treated
in [1], where it is proved that the expansion eliminates quantifiers and is Rg-stable.
Both papers [1, 8] relied heavily on tools from spectral theory like the spectral
decomposition theorem.
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In this paper, when the group involved is non abelian, we cannot use the spectral
decomposition theorem to describe the action. Instead, we rely on tools from
representation theory when dealing with finite groups or tools from C*-algebras
theory when the group is not finite. We denote the theory of a Hilbert space
expanded by the unitary representation 7 of a group G as IHS,.

We first consider expansions corresponding to actions of finite groups. The main
tool we use are basic ideas from representation theory (see [14], which we review
in Section 2 below). In this context, existentially closed expansions (that played
a crucial role in the literature of similar expansions) can be understood as those
with a richer presence of irreducible representations, other representations will have
instead irreducible pieces with finite multiplicity. We prove that the theory of any
such expansion is Ng-categorical and Ng-stable. We also define a natural notion
of independence and prove it coincides with non-forking, which allows us to prove
some “geometric” results associated to the theory of the expansion. For example,
we show the expansion is non-multidimensional. We also show that the associated
theory of Belles Paires of IHS; is Ny-categorical and thus the theory THS,; is strongly
finitely based (SFB)(see Fact 3.19 and the discussion before for more details).

Then we deal with the case when G is countable infinite. To analyze these expan-
sions, we need to switch to new tools. Instead of using tools from representation
theory, we need to consider the C*-algebra generated by the unitary maps from
the representation and use consequences of Voiculescu’s theorem (see [11, Theo-
rem I1.5.8] and Section 2 below) to prove that the theory THS, is Rp-categorical up
to perturbations, and when the theory THS, is model complete, it is Ng-stable up
to perturbations (see Definition 2.26 below).

This paper is organized as follows. In Section 2 we give some basic tools from
representation theory of finite groups, and basic background on operator theory
including the notion of spectrum of a unitary operator, some ideas from C*-algebras
like Voicolescu’s Theorem, and some model-theoretic applications to perturbations.
In Section 3 we consider the case where G is finite, we prove the corresponding
expansions Ng-categorical and Ny-stable and give a natural characterization of non-
forking independence and show the theory is SFB. In Section 4, we deal with the
case where G is infinite and prove that the theory IHS, is Ny-categorical up to
perturbations. Finally, we show that when the theory IHS, is model complete,
then THS,; is Ny-stable up to perturbations.

We will assume the reader is familiar with continuous logic, all background
needed can be found in [6, 7], some basic knowledge of perturbations will also
be helpful, the corresponding background can be found in [2]. We will assume no
prior knowledge of representation theory. The necessary background on this subject
and on operator theory will be introduced in Section 2.

2. BACKGROUND ON OPERATOR THEORY AND REPRESENTATION THEORY

In this section, we first review results from representations of finite groups, our
main focus is on irreducible representations and projections onto sums of isomorphic
irreducible representations; these sums play the role of basic blocks that will help
us describe the theory IHS,,. We then introduce some technical tools from operator
theory and C*-algebras concerning Voiculescu’s theorem.
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We start by introducing the language used to treat a Hilbert space expanded by
a unitary group representation as a metric structure.

DEFINITION 2.1. — Let G be a group and let H be a Hilbert space. A unitary
representation w of G on H is a homomorphism 7: G — U(H). We define
Tty

L= {o,—,z, 5 e’ 0e 27r@}
to be the language of Hilbert spaces and
Ly:=LU{n(g): g€ G},
as the representation language, where each 7(g) is a unary function with modulus of
uniform continuity A(e) = e. We denote the theory of infinite dimensional Hilbert
spaces by ITHS. The language £ defined above is the one presented in [3] enriched
by multiplication by the family of complex scalars {e? : § € 27rQ}. We denote by
THS,. := Th(H, 7) the theory of the infinite-dimensional Hilbert space H expanded
by the unitary representation 7 of G in the language L£,.. Note that the theory

THS;: includes information like “each 7w (g) is a unitary map” and “for all g1, g» € G,
7(g1 - g2) = 7(g1)7(go) as functions”.

2.1. Representation theory of finite groups on linear groups. In this sub-
section we recall some results about representations of finite groups from [14]. These
results will be useful to prove that the theory IHS, is Ry-categorical and Xy-stable,
where 7 is any unitary representation of a finite group G on an infinite dimensional
Hilbert space. In this subsection, G will always stand for a finite group and V for
a finite dimensional vector space.

DEFINITION 2.2 ([14, Definition 1.1]). — A linear representation of G in V is a
homomorphism 7 from G into GL(V'). When V has dimension n, the representation
is said to have degree n.

Now, we introduce the left regular representation of G. As we will later see, this
representation is especially rich respect to other representations.

DEFINITION 2.3 ([14, Example 1.2.b]). — Suppose that V' has dimension |G|
with basis {ey} . indexed by the elements of G (if we add to V' a Hilbert space
structure, it is denoted by £5(G)). For all h € G, we denote by Ag(h) the linear
map sending each e, to epq; this defines a linear representation of &, which is called
the left regular representation of G and it is denoted by Ag.

DEFINITION 2.4 ([14, Section 1.3]). — Let m : G — GL(V') be a linear repre-
sentation and let W be a vector subspace of V. Assume that W is invariant under
the action of G. Then, the restriction maps {7 (g)lw } . are automorphisms of W
satisfying for all g1,¢92 € G

7(g9192)Iw = m(g1)lwm(g2)Iw -

Thus, 7w : G — GL(W) is a linear representation of G on W and it is called
a subrepresentation of V. Additionally, if W has no non-proper and non-trivial
subrepresentation, it is called an irreducible representation.

FacT 2.5 ([14, Theorem 2]). — Every linear representation is a direct sum of
irreducible representations.
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FacT 2.6 ([14, Corollary 1, Theorem 4]). — The number of irreducible repre-
sentations W; isomorphic to a given irreducible representation W is independent of
the chosen decomposition.

These last two facts will allow us to understand the theory of a Hilbert space ex-
panded by a unitary representation of a group. An arbitrary unitary representation
can be split into a direct sum of its irreducible subrepresentations and we can count
the number of times each irreducible representation appears in the sum. We call
this number (which can be a natural number or oo when dealing with infinite di-
mensional Hilbert spaces) the multiplicity of the given irreducible representation.
Part of our work in Section 3 is to show that the multiplicity of each irreducible
representation can be recovered from the theory of the expansion.

Remark 2.7. — Let H be a Hilbert space of infinite dimension and let 7 be a
homomorphism from G to U(H). Studying such a representation can always be
reduced to the study of representations of G in finite dimensional subspaces. To
do this reduction, take some x € H and consider the finite dimensional subspace
generated by {m(g)z} 5. In this space we could use the theory for representations
of finite dimension and then we wrap these spaces together to understand the action
of G all over H.

FacT 2.8 ([14, Corollary 1, Proposition 5]). — Every irreducible unitary rep-
resentation W of G is contained in the left regular representation of G with mul-
tiplicity equal to its degree. In particular, there are only finitely many irreducible
unitary representations of G.

This fact suggests that if we take the direct sum of countably many left regular
representations of GG, then the structure obtained should be existentially closed,
which indeed is the case even in the larger setting of amenable groups:

FacT 2.9 ([9, Theorem 2.5 and Theorem 2.8]). — Let S be a countable and
amenable group. Then the model (00l2(S), 00As) 1= @n>1(¢2(S), As) (countable
copies of the representation ({2(S), Ag)) is existentially closed and its theory has
quantifier elimination.

The theory of the model described in Fact 2.9 is the model companion of the
theory of a Hilbert space expanded by any unitary representation of S. The proof
provided in [9] uses Hulanicki’s theorem. In this paper, we will give a different
proof of this result in Corollary 3.8 when the underlying group G is finite.

Let us return to tools from representation theory. Let T' be a linear transforma-
tion over V, and let be B a basis of V. If [a;j]p is the matrix representation of T
in the basis B, then the trace Tr(T) := >, ay;, is independent of the choice of B.

DEFINITION 2.10 ([14, Definition 2.1]). — Let 7 be a linear representation of G
in V. For each g € G, the map 7(g) is a linear transformation over V and we denote
the trace of w(g) by x»(g) := Tr(xw(g)). This complex valued function x, : G — C
is called the character of .

Characters are important in representation theory since they determine the ir-
reducible representations. Indeed, two representations having the same characters
are isomorphic (see [14, Corollary 2, Theorem 4]), meaning that there is a bijective
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linear transformation between the representations preserving the action of G. Ad-
ditionally, in our context, characters play an important role since we will use them
(see Fact 2.11 below) for defining projections from a linear representation onto its
irreducible representations.

Given the group G, by Fact 2.8 there are finitely many irreducible unitary rep-
resentations Wiy, ..., Wy (modulo isomorphism) of G. Let x1, ..., xx be their char-
acters and let nq,...,n, be their degrees.

Let V be a finite dimensional vector space with a linear representation of G.
Write V =U; @ --- ® U,, as a decomposition of V into a direct sum of irreducible
representations of G. For each ¢ = 1,...,k we denote by V; the direct sum of
those irreducible pieces among Uy, ..., U,, that are isomorphic to W;. Then, we
can write V. =V, @ --- @ Vi, a new decomposition of V into sums of irreducible
subrepresentations of V' that belong to distinct classes of isomorphism.

FacT 2.11 ([14, Theorem 8]).

(1) The decomposition V=2 Vi @ --- @ Vi does not depend on the initially
chosen decomposition of V' into irreducible representations of G in V.

(2) If1 < i < k, the projection p; of V onto V; associated to the decomposition
in (1) is given by p; = % > gec Xi(9)*m(g) (and may be identically 0 when
W; is not represented in ).

Remark 2.12. — Consider now an infinite dimensional Hilbert space H and a
representation 7 of G in H and consider the expansion of H in the language L
that includes a symbol for each mw(g) for ¢ € G. For each 1 < i < k we let
P, = l"a >_gec Xi(9)"m(g), then the function P; is definable in L.

2.2. Operator theory and C*-algebras. Let H be a Hilbert space and let T be
a bounded linear operator on H.

DEFINITION 2.13. — The spectrum of a linear operator T', denoted by o(T), is
defined as the set

o(T) ={A € C: (T — XI) is not bijective}.

The spectrum can be divided into three different types:
o 0,(T) := {AeC:ker(T —A)#0}; if X € 0,(T) we call X\ a punctual
eigenvalue of T'.
e 0. (T):={AeC:ker(T—A)=0 and Im(T —A)=H};if A € 0.(T)
we call A\ an approximate eigenvalue of T'.
e 0. (T):={AeC:ker(T—A)=0 and Im(T —-\)# H};if X € 0.(T)
we call A a residual eigenvalue of T'.
The punctual spectrum is the collection of punctual eigenvalues, the continuous
spectrum is the collection of approximate eigenvalues, and the residual spectrum is
the collection of residual eigenvalues.

Fact 2.14 ([12, Corollary 6.10.11]). — Let T' be a normal operator over a
Hilbert space H. Then T has no residual eigenvalues. Thus, the spectrum of a
normal operator is divided only into two pieces

o(T) = op(T)U o (T).
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Next, we introduce the concept of a C*-algebra along with the concept of a
representation of a C*-algebra. These two are fundamental to understand the key
concept that we will use in this paper: approximately unitarily equivalence between
algebras.

DEFINITION 2.15 (Basics of [11]). — A Banach algebra A is a complex normed
algebra which is complete (as a topological space) and satisfies ||AB|| < || AJl||B]|
for all A, B € A.

DEFINITION 2.16 (Basics of [11]). — A C*-algebra A is Banach x-algebra (a Ba-
nach algebra with an involutive operation x) with the additional condition that
|A*Al| = ||A||? for all A € A.

Example 2.17 ([11, Example 1.1]). — The algebra of all bounded operators B(H)
on a Hilbert space H is a C*-algebra with the usual operation of adjoint —*. This
result follows from the equality:

|A*All= sup [(A*Ax,y)| = sup |(Az, Ay)| = || A%
llzll=llyll=1 lzll=lyll=1

Example 2.18. — The subalgebra of compact operators in B(H) on a Hilbert
space H, denoted by K(H), also defines a C*-algebra.

DEFINITION 2.19 (Basics of [11]). — Let A be a C*-algebra and let H be a
Hilbert space. A map 7 : A — B(H) is said to be a *-representation of A if 7 is a
homomorphism of x-algebras which commutes with the involution.

DEFINITION 2.20 ([11, Section II.4]). — Let A be a C*-algebra and let m and
o be representations of A on Hilbert spaces H; and Hs respectively. The repre-
sentations m; and 7y are called Approximately Unitarily Equivalent (AUE) if there
is a sequence of unitary operators {Ok}keN with O : Hy — Hs such that

ma(A) = lim Opm(A)O; for all A € A.
k—o0
where convergence is in the sense of the operator norm topology.

There is a strong connection between two families of operators being approxi-
mately unitarily equivalent and the structures (the Hilbert spaces expanded with
the C*-algebras) being elementary equivalent.

Remark 2.21. — Let A be a C*-algebra and let m; and 7y be representations
of A on separable infinite Hilbert spaces H; and Hs respectively. Assume the
representations 71 and o are AUE. Then we have (Hy, 7 ) = (Ha, 72).

Proof. — Since H; and H, are separable, we may assume H; = Hs. Since the
representations 7, and 7 are AUE there is a sequence {O}}, o\ of unitary operators
satisfying

ma(A) = klim Opm1(A)O; forall A€ A (2.1)
hde el

Let F be a non-principal ultrafilter over N and consider the ultrapowers

H(Hl,ﬂ'l) and H(Hg,ﬂ'g).

k,F k,F

First define ®: [], » H1 — [[, » H2 as the map ®([(v)kl7) = [(vk)r]F induced
by the identification H; = H, as Hilbert spaces. We extend the function ® to
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the maps in the representation by defining, for each A € A, the correspondence
®[(m1(A))k]F = [(Orm1(A)O;f)i) 7. For a fixed index k € N, the map Oy, is a unitary
transformation so the k"' component of the map ® that sends 1 (A) to Oy (A)O;
is an isomorphism of representations of \A. Moreover, by Equation (2.1), for each
A € A we have m(A) = limy_,o0 Oxm1(A)O5, so the representation H,%}-(Hg,m)
is isomorphic to [, »(Ha, Oxm Of) and thus [[, »(Hi,m) =[], #(H2,m). O

Voiculescu’s Theorem states that two separable C*-algebras, say A and B, are
AUE if there is a completely positive definite map ®: A — B (see [11, p. 65]) such
that K (H) N A C ker(®) (see [11, Theorem II.5.3]). This last requirement is prob-
lematic in our context. Since we are considering not only the regular representations
(which have no compact operators in the generated C*-algebra when the group is
infinite), but arbitrary representations of discrete groups, it is likely that they may
include compact operators. Thus, requiring the condition ®(K(H) N .A) =0 is too
restrictive. However, there are some consequences of Voiculescu’s theorem which
include a finer control on the behavior of compact operators under ® that will work
better in our setting.

DEFINITION 2.22 ([11, p. 34]). — Let A be a C*-algebra and let (H,w) be a
representation of A. We say that 7 is non-degenerate if 7(A)H is dense in H.

Fact 2.23 ([11, Lemma I1.5.7]). — Let A be a C*-subalgebra of the algebra
of compact operators and let m; and mo non-degenerate representations of A on
separable Hilbert spaces Hy and Hy respectively. Then, m; and my are unitarily
equivalent, i.e. there exists U : Hy — Hy unitary such that

[m2(A) — Umi (A)U[| =0
if and only if rank(m;(A)) =rank(ma(A)) for all A € A.

Fact 2.24 ([11, Theorem 11.5.8]). — Let A a separable C*-algebra, and let m;
and w9 non-degenerate representations of A on separable Hilbert spaces. Then,
and my are AUE, if and only if rank(mi(A)) =rank(ma(A)) for all A € A.

Model theoretic consequences of the previous fact go back to unpublished work
by C. Ward Henson, who pointed out to the first author of the paper that this result
characterizes, up to elementary equivalence, expansions of Hilbert spaces with a self
adjoint operator (in the form of the Weyl-von Neumann-Berg theorem).

LEMMA 2.25. — Let A be a separable C*-algebra. Then, every x-representation
7 of A on a separable Hilbert space H, can be written as m. ® 7+, where 7, is
composed only by compact operators and 7= has no compact operators. Moreover,
we can write H = H, ® H:-, and the operators in 7. and 7+ act on H. and H>

respectively.

Proof. — It folows from the proof of [11, Corollary I1.5.9]. O

We now introduce perturbations in our setting. The reader may want to check [2]
for an introduction to the subject. The reader may also want to check [4] for the
theory of perturbations applied to expansions of Hilbert spaces with a single unitary
map.
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DEFINITION 2.26. — Let G be a countable group, let m be a unitary representa-
tion of G in an infinite dimensional Hilbert space H, and let IHS, = Th(H, ). Fix
{gn}, ey an enumeration of G. Let (Hy,71) and (Hz,m2) be models of IHS, of the
same density character and let € > 0. We define an e-perturbation between (Hy, m1)
and (Hj, ) to be an isometric isomorphism of Hilbert spaces U : Hy = Hy which
also satisfies

Z 2%”[]71’1(9”)(]71 — ﬂ'g(gn)H <e.

n>=0
The set of all e-perturbations will be denoted by Pert. ((Hy, 1), (Hz2,72)) or simply
by PertE(Hl,ﬂ'l) if (Hg,ﬂ'g) = (H177T1).

Assume now that (Hy, ) is saturated and strongly homogeneous and let A C
H, be small and p,q € S,(A). Given ¢ > 0, we say that dpert(p,q) < € if
there is a unitary map U on H; and realizations d | p, b E ¢ in H; such that
U € Pert.(Hy,m), Ula=ids and ||U(@) — b|| < e. We say IHS, is Ro-stable up to
perturbations if for any A C H; separable, the density character of (S1(A), dpert)
is countable.

We say that (Hp,m) is Ng-saturated over (Hp, 7o) up to perturbations if for
any (Ha,m2) = (Ho,mo) with dim(Hy N Hi) < Xy and every € > 0 there is an
e-perturbation between (Ha,ms) and an elementary substructure of (Hy, ) that
fixes (Hyp, 7o) pointwise.

We say the models (Hy,m) and (Ha, o) are approximately isomorphic if for
each € > 0 there exists an e-peturbation between them. The theory THS, is called
No-categorical up to perturbations if each pair of separable models of THS, are
approximately isomorphic.

Remark 2.27. — Fix a theory THS,. Assume that for every separable (Hy, 7o) =
THS, there is a separable (Hy,m) = (Hp, o) which is Ng-saturated over (Hy,mo)
up to perturbations. We claim that if this is the case, then THS, is Ng-stable up to
perturbations. Indeed, by Léwenheim—Skolem any separable subset A of a model of
THS,; is a subset of a separable model (Hy, mp) = IHS,. Then, if (Hy,m1) > (Ho, 7o)
is separable and Rg-saturated over (Hy, ), the density character of (S1(Ho), dpert)
is countable and thus so is the case for (S1(A), dpert)-

3. HILBERT SPACES EXPANDED BY A REPRESENTATION OF A FINITE GROUP GG

In this section we will study unitary representations of a finite group G on a
separable infinite dimensional Hilbert space H. Let L, be as in Definition 2.1.
Let @ € H™, we will write tp(&@) for the type in the sense of Hilbert spaces and
tp, (@) for the type in the extended language L. Similarly, we write qftp, (@) for
the quantifier free type of the tuple in the extended language.

We will show that for any such representation 7, the theory IHS, = Th(H, n(g) :
g € G) is Ny-categorical, has quantifier elimination and is Rg-stable.

Since G is finite, by Fact 2.8 there are finitely many irreducible representations
of G and all of them are finite dimensional. Let W7,..., W} be a list of these rep-
resentations and, after reorganizing the list if necessary, we may assume there is
m < k such that Wy, ..., W, are the irreducible representations of G having infin-
itely many copies in (H,7(g) : g € G). Notice that, since H is infinite dimensional
and separable, the number m can not be zero, and the number of copies of any W;
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for 1 < i < k is at most Xg. We can also define Hi» = V,, .1 @ --- ® V}, as the
direct sum of the remaining irreducible representations, the ones appearing only
finite many times in H, say with multiplicity d,,+1,...,d respectively. Then, if

m+1< 1<k, we have V; = Wid'i. Notice that k could be equal to m and thus
Hfi™ could be the zero subspace. Finally write

Hzéwl@---éwm@ffﬁn
t=1 t=1

DEFINITION 3.1. — For each m +1 < ¢ < k we call V; = @t 1 Wi a finite
component of H. On the other hand, for each 1 <i<mwecall H, = @,2, W, an
infinite component of H. Finally by a component we mean a finite component or
an infinite component. Also, by H™ we mean the sum Hy & - - @ H,,.

PROPOSITION 3.2. — The projections from H onto each of its components are
definable in the theory THS;.

Proof. — Fix 1 < ip < k and take n;, and x;,(g) as in Fact 2.11(2). Then (see
Remark 2.12) the functlon P;,: H — H, defined as

P = i 2 Xinl) (90 (3.1)

geG

is a definable function in the language £,.. Given v € H, we can write v as the sum

i Z ’Ugt) 4 Z v; € I{infEB}Iﬁn7

t=11<i<m m+1<i<k

where for 1 < 7 < m the vector v ) denotes the projection of v on the t** copy
of W; in Hlnf and form+1<i< k the vector v; denotes de projection of v on V;
in Hi". We will prove that the equation defined in (3.1) defines the projection
onto H;,. We will do the proof for some infinite component H;, of H, the proof for
a finite component of H is analogous. By definition

o S w5 5 e ¥

geG t=11<i<m m+1<i<k
> n n
_E:E: 10}: (® 2: 10}:
- |G| XL(J g) + Xlo V-
t=11<i<m geG m+1<z<k gEG

Notice that we can restrict 7(g) to each copy of the irreducible subrepresentations
Wi of T

(®)

(gl = W(g)fwmv and  m(g)v; = 7(g)lw,vi,

then using the projection p;, given by Fact 2.11(2), we could write P; v as
oo o0
Pa=Y X mnt X pn= 3ol
t=11<i<m m+1<i<k t=1

We can conclude that the function P;, is the projection of H onto the infinite

component H;, of H and it is definable. O
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THEOREM 3.3. — Let 7 be a unitary representation of G on a Hilbert space H
such that H = H™. Then the theory THS, is R-categorical.

Proof. — First note that the theory THS, includes as part of the information
that (7(g) : g € G) is a representation of G by unitary maps.

By Proposition 3.2, for each 1 <7 < k the projection P; onto H; is definable in
the theory THS,. Fix some 1 < ¢ < m, and consider the following scheme indexed
by n. To simplify the notation, the indexes t, s will range over {1,...,n} and the
indexes j1,j2 and j will range over {1,...,n;} (recall that n; is the degree of W;):

)

w2 < 1], [P = of] .
7 t

J1 j2> < J1 j2> ‘ =0 3.9
max [{(v]',v!?)|, max |[(v]',v . .
t<s,j1<J2 < ¢ s t,j1<j2 ¢ ¢ ( )
In the sentence above #; denotes the set of vectors {v}, ..., v }. The n'! sentence in
the Scheme (3.2) indicates that there are n collections of n; vectors {v},... v},

which are almost orthonormal and almost invariant under the projection P;. Ob-
serve that this scheme belongs to THS, for any 1 < i < m, that is, for any of the
irreducible representations W; of GG appearing in H. Additionally, the sentence
P; =0, 3.3
sup_ max [[Pi(v)] (33)
indicates that the irreducible representation W; for i > m + 1 are not represented
in (H,n).
Now let (K, p) = THS, be separable. Since K is a model of the theory IHS, we
have that for all n € N there is ¢ > 0, such that for j; < j2 and j, and s < t as
above if there are vectors in K satisfying

‘1 - ||v§||2‘ <e and ‘<vf1,v§2>’ <e

then (after applying Gram—Schmidt and taking a different family) there is a family
of exact witnesses for the property described in the equation. Thus we may assume

the set {v},...,v;""} is orthonormal to the set {vl,..., o™} when t # s. Now, for

all n € N and each 1 < ¢ < m, we shall prove there are n orthogonal copies of W;
in K. For each t consider the vectors

P}
1. 171 ng
w;y -

= e, Wy Pﬂ];h .
Pofl ™ TP

It follows from Scheme (3.2), that the set {w},...,w}"} forms a basis for a copy
of the irreducible representation W;. Furthermore if s < t the set {w},...,w;"} is
orthogonal to the set {w!,...,w?}. Thus, for any irreducible representation W;
appearing in H™ actually we can find a countable number copies of it in K.
Moreover, by Proposition 3.2 we can build a first order sentence axiomatiz-
ing that any vector v € K (or any other model of THS;) can be written as
v = Z1gigm Pv. Therefore, since both (H,n) and (K,p) are separable, the
multiplicity of each W; in K is Ny, and K is only composed of copies of W; for
1 < ¢ < m. Since both K and H contain R, copies of each irreducible representa-
tion Wy, ..., W,,, and no copy of W; for m+1 < i < k, the two representations are
isomorphic. O
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We can extend Theorem 3.3 to a general unitary representation m of G acting
on a separable Hilbert space H:

COROLLARY 3.4. — Let w be a representation of G on an infinite dimensional
Hilbert space. Then the theory THS, is Wg-categorical.

Proof. — Following the notation of Definition 3.1 associated to the model (H,7),
we get a new axiomatization by keeping Scheme (3.2) and replacing the sen-
tence (3.3) for a collections of sentences describing the dimension and multiplicity
of each irreducible representation W; in H fin Fix some m+1 <4 < k, as in The-
orem 3.3, to simplify the notation, the indexes s,t will range over {1,...,d;}, and
the index j will range over {1,...,n;}. Consider the following sentence from THS,:

Pivf —U{H}, max’<vf v§>

)

inf sup max{max{’”vf” —1‘, ‘
t,j

U floll=1 s<hd
di ng ) )
Py — Z Z <vg,Piv>vg =0. (3.4)
t=1 j=1
In the sentence, ¥, denotes the set of vectors {v},..., vy}, and recall from the

beginning of the section that for each 1 +m < ¢ < k the multiplicity of W; in H fin
is d;, and n; is the dimension of W;. As we shall prove below, the sentence in (3.4)
axiomatizes the presence of exactly d; copies of W; in Hfin.

Let (K, p) be a separable model of THS,, and let £ > 0. We can assume that for
each t, the family {vf,...,v"} given by the sentence (3.4) satisfies

[Pt = 1] < & 1P| = 1] < e.

Furthermore, using that K = THS is Rg-saturated (or by choosing ¢ sufficiently
small), there is subspace K; of K with dimension n;d; invariant under the action
of m with P;(K;) = K;. Thus by Fact 2.11 there are at least d; different copies of
W; in K. Moreover, that is the exact number of copies of W, in K. Suppose there
is one more copy of W, with vector basis wy, ..., wy,,, then using sentence (3.4) the
projection of each w; in the orthogonal complement of K; is arbitrary small and
thus it should be zero.

It also follows from the proof of Theorem 3.3 that dim(H;) = dim(K;) = Ny
for all 1 < i < m, so we get dim(H;) = dim(K;) for all 1 < ¢ < k and thus the
structures are isomorphic. U

Remark 3.5. — Let (K, p) be a model of IHS. Let C' C K be a closed subspace.
We denote by Pr¢ the orthogonal projection from H onto C. Let @ and b be tuples
of K™, if for each 1 < i < k we write P; for the projection on the i*" component
of K, then

aftp,(@/C) = qftp, (b/C) implies Prc(Pi(aj)) = Prc(P;(b))).

Proof. — By Proposition 3.2 each P; is quantifier free definable, so for each
1 <i < kandeach 1 < j < n we have qftp,(a/C) = qftp,(b/C) implies
aftp(Pi(a;)/C) = aftp(P;(b;)/C). It follows from basic results on IHS (see for ex-
ample [6, Lemma 15.1]) that qftp(P;(a;)/C)=qftp(P;(b;)/C) implies Prc(P;(a;)) =
Pro(Pi(by)). O
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PROPOSITION 3.6. — Let m be a unitary representation of a finite group G
on an infinite dimensional Hilbert space K. Then the theory IHS, has quantifier
elimination.

Proof. — Let (K, ) be a separable model of THS,.. We will prove that if @ and
b are arbitrary n-tuples of K such that qftp,_ (@) = qftp, (b) then tp,(a) = tp, (b).
Fix 1 < ip < k and define K;, := P, (K). Additionally, let us assume without loss
of generality that @ and b are non-trivial arbitrary n-tuples of K;, and define

A = LJG{ﬂ(g)al, ...,m(g)an} and B, = LJG{W(g)bh cooym(9)bn}

Thus, by assumption (A4;,) and (B;,) (the span of the corresponding sets) are non-
trivial subspaces of Kj,,.

CLAIM 3.7. — There is an Lr-isomorphism sending (A;,) to (Bj,).

Proof. — Since (4,,) and (B;,) are subspaces of K;, closed under the action
of m, by Fact 2.11(2) we can decompose these finite dimensional vector spaces
as the direct sum of copies of the irreducible representation W;,. Notice that

aftp, (@) = qftp,. (b) implies
(r(h)ai, m(g)a;) = (w(h)b;,m(g)b;) foralll<i,j<n and g,heG, (3.5

and recall that the linear independence of one vector from others is a quantifier free
sentence expressible in the language of Hilbert spaces. Then, these inner product
equations imply that if we take a subset of A;, which forms a basis for (4,,) then
the corresponding subset in B;, forms a basis of (B;,), hence dim(A;,) = dim(B;,).
Then we can write

(Ai)) 2UL®---aUS and (B)2UP @ 0 UP,

for some 1 < ¢, where each term of the sum is a copy of W, where the sum for
(B;,) comes from the map sending A;, to B;,. In fact, for all 1 < j < n and all

1 < ¢ < ¢ we have that

is implied by qftp, (@) = qftp,(b) and the way we constructed the sum. Now, take
any of the copies of W, in (A;,), namely U;‘. As above, if we choose a basis of U,fi‘
from (A;,) its corresponding subset of (B;,) give us a basis for UZ and the action
by the maps (7(g) : g € G) is compatible with this correspondence.

Then the bijection (A;,) — (B;,) induced by the bijection A;, — B;, is an L,-
isomorphism between (A4;,) and (B;,). O

Notice that, if we start with @ and b as general tuples of K, we can apply, for each
1 < k, the above construction to obtain a map f; : (P;(a@)) — (P;(b)) that respects
the action of w. Putting the f; together into a single function f one constructs a

L -isomorphism f between the closed subspaces

A= < U {m(g9)ai,... ,ﬂ(g)an}> and B:= < U {m(g)b1,... ,W(g)bn}>.

geG geG

PrU;} a; PrUﬁ b;

10

sending @ to b. Now we extend f to an £, isomorphism ¢ over K. Observe that we
can write K 2 A @ A+ and K = B @ B+. Moreover, both A+ and B+ are models
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of T/, where 7’ is the restriction of 7 to A+, by Corollary 3.4 we have A+ = B+
as Ly-structures. Thus, there is a L -isomorphism ¢: K — K sending @ to b. O

COROLLARY 3.8. — Consider the representation formed by the sum of count-
able copies of the left regular representation, denoted by coA¢q, which acts on the
separable Hilbert space coly(G). Then, for any unitary representation m, we can
embed a separable model (H,r) of THS, into (cofly(G),00)\g) and the structure
(00l (G), 00A¢) is existentially closed.

Proof. — Let (H, ) be as in the hypothesis. By Fact 2.8 all irreducible repre-
sentations of G appear in (0ol (G), c0Ag) with infinite multiplicity. In particular,
each of the irreducible representations used in (H,w) (with finite or infinite mul-
tiplicity) appears in (cofa(G), c0Ag) and thus we can embed the structure (H, )
into (00la(G), 00Ag).

Now we show the structure (coly(G), c0Ag) is existentially closed. Assume that
(H,m) > (00l2(G),0Ag) is a separable superstructure. As we mentioned above,
we can find a copy (oola(G)',00)y;) extending (H,7) and thus also extending
(00la(G), 0Ag). By quantifier elimination, (coflz(G),00Ag) =< (00le(G), 00A)
and thus all existential witnesses in (H,7) have an approximate witness inside
oolz(G). O

This gives another proof that Th(cols(G), c0Ag) is the model companion of the
theory of representations of G (compare with [9, Theorem 2.8]).

THEOREM 3.9. — Let 7 be a unitary representation of a finite group G in an
infinite dimensional Hilbert space. Then the theory THS, is Ng-stable.

Proof. — Let (K, p) be a separable model of THS,, by Corollary 3.4 we can
decompose K = K™ @ K™ as in Definition 3.1, then

K=2(K & OKp)®Vnp@---0 V).
To show that the theory IHS, is Ny-stable, it is sufficent to take £ C K countable

such that E = K and prove that the density character ||(S1(E),d)|| < Ng. Let us
consider (K, p) = (K, p) the superstructure defined as

K=K@wle -awp,

where WP, ..., W9 are copies of the irreducible representations Wy, ..., W,, in Kot
respectively and p is the direct sum of the homomorphism from G to WY& - - W2,
with p.

Let (F,7) = (K, p) be an arbitrary separable elemental superstructure. By Rg-
categoricity of the theory IHS,, we can write F' = F'™ @ Ffin and notice that
K — i then

F=F & 0F,PF™"

and each of the spaces F; with 1 < ¢ < m has dimensions Ry. Now, for each
1 < i < k let us define Pr% : F — F;N E, as the projection of F onto F; N E
defined by Pr% = PrzP;, where Prz is the orthogonal projection onto the closed
subspace I, and P; : ' — F; is the projection on the i*" component of F' (defined
as in Proposition 3.2). Now, take v € F, by Proposition 3.6 the theory IHS, has
quantifier elimination and the type tp, (v/E) is determined by the elements Prz(v)
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and the types {tp, (P;v —PriE v) : 1 <i < m}, ie. the types of elements orthogonal
to E that lie in the different components of F'*f. Since E = K and Kfi* = Ffin,
and for all m + 1 < i < k we have Pr’Ev € K;. Thus we only need to realize in
(K, p) the types {tp (Pv — PriE v):1<i<m}in a space orthogonal to E.

Fix an index 1 < ¢ < m and set w; = Pjv — Pr’E v. If w; = 0 there is noth-
ing to prove. Otherwise (U,cs{7(9)wi}) is a copy of W;. Then there exists an
isomorphism

fi: < U {T(g)wi}> — W C IA(,

geG

respecting the action of the operators induced by 7 and p. Repeating the argument
for all 1 < i < m, we define

7= (Pra(®) + (fi(wn) + -+ fn(wm)) € K.

Then we have tp, (0/E) = tp, (v/E) and the new realization of the type belongs to
(I/(\',ﬁ) which is separable, hence ||(S1(E), d)|| < Ro. O

Now we characterize algebraic closure in models of IHS, and we will also give a
natural description of non-forking. We work in (H,7) a x-saturated and k-strongly
homogeneous model of THS,; for some uncountable inaccessible cardinal . We say
that A C H is small if |[A] < k, and if C' C H is a closed subspace, we denote
by Pr¢ the orthogonal projection of H onto C. Additionally, if A C H we write
acl(A) and dcl(A) for the algebraic and definable closures of A in the language L,
respectively, and cl(A) for the topological closure.

PROPOSITION 3.10. — Let A C H be small. Then
acl(4) = cl(({r(g)(a) :a € A,g € G}y UH™)).

Proof.

D7, — Notice that, for each m + 1 < i < k the component V; of H is finite-
dimensional, and by Proposition 3.2 the pI‘OJGCthn P; : H — V; is definable in the
theory IHS,. Then, the unitary ball of V; is definable over () and compact and thus
algebraic over (). Hence H™™ C acl(A). Clearly we also have {r(g)(a) : a € A} C
acl(A) and thus the containment follows.

“C”. — Now, set E :=cl({({m(a) :a € A,g € G} U H™)) and suppose v ¢ E,
then ||Prp.(v)|| > 0. By hypothesis E+ C H‘“f7 so there exists 1 < j < m such
that |[Pj(Prg.v)| > 0. Since A is a small subset of H, so is E. Since H; is
large, the subspace H; N E* has infinite dimension. Thus, we can find a sequence
{vl}22, € H; N E* of orthogonal vectors with norm || P;(Prp. v)|, such that

tp | vf + Z (Prgiv)+Prgv/A | =tp(v/A) forall ¢t >1
i=1,i#j

The elements of the sequence {v] + POy iz Pi(Prpev) + Prgu}ie, are at the
same positive distance one from the other and thus v & acl(A). O

OBSERVATION 3.11. — It follows from the previous proof that for A C H be
small we have dcl(A) = cl({({m(g)(a) : a € A, g € G})).



MODEL THEORY OF HILBERT SPACES WITH A DISCRETE GROUP ACTION 47

For the rest of this section, whenever A C H, we write A for the algebraic closure
of A in the language £,. To deal with non-forking, we introduce an abstract notion
of independence and then show it coincides with non-forking. Our approach follows
the argument for a single unitary operator presented in [1]. A similar characteri-
zation was used in [9, Section 3] to show that that THS, is superstable when G is
countable and the expansion is existentially closed. Instead of repeating again all
of the steps, we will prove the key steps that make the arguments work.

DEFINITION 3.12. — Let (H,m) = IHS, be s-saturated and k-strongly homo-
geneous. Let @ = (ay,...,a,) € H", and let A, B and C C H be small. We say
that @ is #*-independent from B over C if for all 1 < j < nand 1 < i < k we
have Prz55(P;(aj)) = Prs(Pi(ay)). If @ is +-independent from B over C' we write
@ "¢ B. Additionally, if all finite subsets @ of A are such that @ |*~ B, we say
that A is *-independent from B over C and we write A [* B.

LEMMA 3.13. — Let C C H be such that C = C and let v € H. Then, for all
1 <@ < k we have P;(Prg(v)) = Pra(P(v)).

Proof. — Notice that for all v € H we can write v = v1 + v, where v; € C and
vy € CL. Let g € G, then for all ¢ € C' we have

m(g)e € C and (w(g)e, m(g)vz) = (¢, v2) = 0.
Since 7(g) acts in C as a bijection, we obtain 7(g)vs € C*+. Thus,
Prem(g)v = 7(g)v1 = m(g) Pre v,

this means that Pro and 7(g) commute for all g € G. Since the projection P; is a
linear combination of the operators {m(g)}4cc (see Proposition 3.2), it follows that
Pre commutes with the projection P; for all 1 < i < k. O

The previous result will allow us to characterize independence over closed sets
without using the projections P; over the components, just as was done in [9,
Section 3:

COROLLARY 3.14. — Let @ = (a1,...,a,) € H", and let B,C C H be small.
Then, @ [* B if and only if for each 1 < j < n, we have Prggsa; = Prza;.

Proof. — Suppose that @ [*» B. Then by Lemma 3.13 for all 1 < j < n and
1 < i < k we have

Prgge Piaj = Prz Pia;  if and only if P; Prggsa; = P Prza;.

Also, for each v € H we have that v = Zle P;v. Then, for all 1 < j < n, we have
the following equivalence

Pi Prmaj = PZ Praaj
for each 1 <i < k if and only if Przgza; =Prga;. O
PROPOSITION 3.15 (Triviality). — Let @ = (a1,...,a,) € H" and b =

(by,...,by) € H*, and let C C H be small. Then, @ [*. b if and only if for
all1 <i<k,1<ji <nandl<jy <Ll we have Pi(aj,) Le P;(bj,).
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Proof. — Assume that @ ch g, then for all 1 < i< kandall 1 < j; < n we
have Pi(Prm(ajl)) = Pi(Prz(ay,)). Since

ég CU{PZb]Q} - CU{bJQ} - CU{bla"'abf}v
we have P, (Prm(ajl)) = Pi(Prg(aj,)). By Lemma 3.13, we have P;(aj,) [*¢
P (bj,).

Now, assume for all 1 < ¢ < k,1 < j; < nmand 1 < jo < ¢ we have that
Piaj, [*c Pibj,. Let us write Piaj, = Prz(Piaj,)+Prgi(Paj,). By hypothesis the
projection of Piaj;, over Pro. (P;bj,) is equal to 0. Then Prz. (P;aj, ) is orthogonal
to P;bj,. Similarly, for any g € G we will obtain that Prz. (Piaj,) is orthogonal to
m(g)(P;bj,). This implies that Prz. (Paj,) LC U {P;bj,}. The above orthogonality
relation holds for each bj, with 1 < j» < ¢, making the projection of Prz. (P;ay, )
on CU{P;by,...,Pbs} equal to 0. Then we obtain

Prz(Pa;,) = Pr

GOTPr Py i)
Observe that the i** component H; of H is closed under the action of the operators
{m(g9)}4ec and subspace projections. Then

P P,-ajl) =Pr P,-ajl).

rCU{Pibl,..‘,Pib[}( CU{bl,...7b[}(

Thus, Prz(Piaj,) = Pr (Piaj,) foralll <i<kand1l<j <n. O

CU{b1,....be}
THEOREM 3.16. — Let (K, 7) = IHS, be k-saturated. Then the notion *-inde-
pendence agrees with non-forking and non-forking is trivial.

Proof. — It is enough to show that x-independence satisfies finite character,
local character, transitivity, symmetry, invariance, existence, and stationarity. We
check finite character, the other properties can be easily checked using the approach
from [1].

Finite character: let @ = (aq,...,a,) € K™ be a finite tuple, and let B,C C K
be small. We prove that if @ [*, By for all finite By C B then @ |* B. Note that
if @ |* By, then Prm(aj) = Prg(a;) for all 1 < j < n. If this happens for all
finite By C B then Przgs(a;) = Prs(ay) for all 1 < j < n as desired.

Finally, triviality of forking follows from the previous result and Proposition 3.15.

O

There are some easy applications of our characterization of non-forking, among
them:

PROPOSITION 3.17. — The theory THS,; is non-multidimensional.

Proof. — It suffices to prove that any non-algebraic stationary type is not or-
thogonal to a type over . Let a € H, let C C H be small and algebraically closed.
Consider p = tp(a/C) and ¢ = tp(a — Prc(a)/0). Then, if p is non-algebraic, we
have a — Prc(a) # 0 and clearly a — Pro(a) [ a. O

We can classify the models of IHS, in terms of the density character of the
irreducible representations that appear in the model. This gives a classification
of models of THS, in terms of finitely many cardinals. We will now study more
“geometric complexity” aspects of the theory. For this we need:
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DEFINITION 3.18. — Let (H,7) be a separable model of THS,, and let K C H
be a closed subspace, which is invariant under the action of m and is such that
(H,7) = (K, 7 |k). Let P be the predicate on H that measures the distance to the
subspace K. Then, if (H,7) is Ng-saturated over (K, [k) and (K, 7 [x) is Ng-
saturated, we call the pair of structures ((H, ), P) in the language £, U{P} a belle
paire. We write T p for the theory of belles paires of models of THS,. Sometimes
instead of writing ((H, ), P) we will abuse notation and write ((H,x), K) for the
same structure.

Belle paires were first defined in first order by Poizat in [13]. There are many
applications of belles paires, among them the work of the first named author of the
paper with Ben Yaacov and Henson around the notion of the topology of conver-
gence of canonical bases [5]. Recall from [5] that a stable theory is SFB (strongly
finitely based) if the topology of convergence of canonical bases coincides with the
distance topology on the space of types over models. This notion is a reasonable
continuous analogue to the notion of 1-basedness for stable first order theories, for
more details see [5]. In this paper we will need belle paires for the following result:

FacT 3.19 ([5, Theorem 3.10]). — Let T' be any stable continuous theory. Then
Tp is Wo-categorical if and only if T' is Ng-categorical and SFB.

Our next goal is to show that THS, has SFB. We already know IHS, is No-
categorical and stable, so by Fact 3.19, it remains to prove that T p is Ng-categorical.
In order to show this, let (H,x), (K,p) be separable models of IHS,, by Corol-
lary 3.4, we have a complete description of these models in terms of the invariant
subspaces, so we can write

H=H"a H " where H" =V, 1 & &V,
and

K=K"gK"™ where K™=V, 16 &V,

Notice that the finite dimensional components of the models are isomorphic as
representations of GG in finite dimensional Hilbert spaces.

LEMMA 3.20. — Let (H,w) = (K, p) and assume ((H,7),K) is a separable
belle paire of models of THS,. Write K+ for the subspace K+ N H of H, which is
invariant under the action of w. Then,

(KL,TI' rKl) = (Hinf,ﬂ'rHinf).

Proof. — Recall that the predicate P(v) = mingex [|[v — w|| measures the dis-
tance to K. Then Prg(v) = argmin P(v) (the projection of v in the subspace K) is
definible in the extended language £, U {P} (see for example [10, Proposition 2.4]
for a proof). It is also easy to see that the distance from a vector v to K= is given
by v/||v||? — P(v)2? and so we can quantify over K- and we get that the projection
over K+ is definable as well. The space Pryg(H)* = K= only has copies of the
irreducible representations of G appearing in H™. Moreover, since (H,7) = (K, p)
is an Ro-saturated extension, each irreducible representation appearing in H™f also
appears in K and has dimension equal to Xg. From this we get the desired iso-
morphism. O
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Remark 3.21. — Notice that since we can quantify over K+, we can express that
dim(H;) N KL >N, for 1 <i < m as a scheme of sentences that belong T p.

THEOREM 3.22. — The theory of belle paires of IHS,; is Ng-categorical.

Proof. — Let ((K1,p), K2) and ((Hy,7),Hs) be two separable models of the
theory T, p. Then, by Lemma 3.20 and Remark 3.21 we have that (Kj, erzL) and

(Hy, 7| ) are isomorphic as representations. Additionally, the models (K2, plk,)

and (Ha, 7 [ g,) are isomorphic as they are separable models of IHS,. Then, the
expansions ((K1, p), K2) and ((Hy, ), Hy) are also isomorphic. O

COROLLARY 3.23. — The theory IHS,; has SFB.
Proof. — The result follows from Fact 3.19 and Theorem 3.22. O

One can change perspective and follow the ideas from [15] and consider actions
by compact groups instead of finite groups and generalize results of G-actions to
that setting. A natural starting point would be:

QUESTION 3.24. — Assume G is a compact group. Can one characterize again
the existentially closed expansions in terms of the left regular representations? Do
irreducible representations play the same role in this setting as they did for finite
groups?

4. HILBERT SPACES EXPANDED BY A REPRESENTATION OF INFINITE GROUPS

In this section G will denote a discrete infinite countable group and we will
fix {gn}, ey an enumeration of G. Additionally, H will be an infinite dimensional
Hilbert space, and 7 : G — U(H) will denote a unitary representation of G. In this
setting, we first give some examples where the theory THS, is either Xy-categorical
or only Ng-categorical up to perturbations. Then, we prove the general result for
THS,, which states that regardless of the nature of G or m, the theory THS, is Ng-
categorical up to perturbations. Finally, we prove that when we also assume that
THS,; is model complete, then THS, is Nyp-stable up to perturbations.

Example 4.1. — Suppose that 7 : G — U(H) has finite image. Then, the isomor-
phism G/ker(w) = Im(7), implies that the unitary irreducible representations of =
are in correspondence with the irreducible representations of the group G /ker(r).
In this case, we can apply the results from the previous section and by Theorem 3.3
the theory THS, is Ng-categorical.

On the other hand, having nonempty continuous spectrum (see Definition 2.13
and the corresponding notation) in one of the operators belonging to the represen-
tation of G over H allows us to construct two separable non-isomorphic models.

PROPOSITION 4.2. — Let (Hy,m1) be a separable model of THS,.. Suppose that
there is g € G such that o(m1(g)) \ op(m1(g)) # 0. Then the theory IHS, is not
No-categorical.

Proof. — Let g € G be as in the hypothesis. By Fact 2.14 there is A € o.(7(g))
and thus we can find a sequence {v, }nen € H of normal vectors such that

HILH;O||ﬁ1(g)U7L - >\'Un||2 =0.
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Let F be a non-principal ultrafilter over N and define M := II,, #(Hy,71). Then,
the element [(v,,),] is normal and satisfies

WM(Q)[(Un)n] = [(71(9)vn)n] = A[(vn)n]-

Thus, A € 0,(m(g)). By Lowenheim-Skolem there exists a separable model
(Hg,m2) of IHS; where A is in the punctual spectrum of m3(g). Then the rep-
resentations (Hy,m) and (Ha,m2) of G are not isomorphic, so the theory is not
No-categorical. O

Modulo perturbations, we get a simpler picture that does not depend on the
spectrum of the operators 7(g,). We start with a technical lemma:

LEMMA 4.3. — Let (H,w) be a model of THS,, and for each g, € G define
U, := 7(gn). Also, let A be the C*-algebra generated by {U,} Then all the
operators in A are definable in the language L.

neN-

Proof. — We denote by A the *-algebra generated by {U,},cy. Since the
product of U, with U,, is in {Un}nEN7 any element T' € Ay can be expressed
as T = > ; \;U; and thus it is definable in £.. Observe that if we take the
topological closure of Ay in the operator topology, we obtain .A. Since the topology
in B(H) is the generated by the norm:

IT||= sup ||Tz| where T € B(H),
lzll<t

if T € A, then T is the limit of sums of the form T}, = > /", \;U;. Thus, we can
write T'= Y2, \;U; which satisfy for every x,y in the unit ball of H the following

1Tz =yl = T2 = yll| < |IT2 = Tna| < |IT = Tul.-

Hence the sequence {7, — yl|},,cy converges uniformly to ||z — y|| in the unit
ball of H. Thus, the function T': H — H is definable. O

For the next results, recall Definition 2.26 and Remark 2.27.
THEOREM 4.4. — The theory THS, is Wg-categorical up to perturbations.

Proof. — Let (Hy,m ) and (Ha, m2) be separable models of THS ;. For each n € N
define U, := m1(gn) and V,, := m2(gn ), also we denote by ¢ the s-morphism induced
by the assignment ¢(U,) = V,,. Let A and B be the C*-algebras generated by
{Un}pen and {V,,}, oy respectively, then the extension ® of ¢ to A is a representa-
tion of A in B(H2) with image equal to B. We are dealing with two representations
of A, first id 4 the representation that sends each T' € A to itself, and ®, the rep-
resentation induced by ¢. If we prove that for all T € A we have that rank(T) =
rank(®(T)), then by Fact 2.24 the representaions id4 and ® are approximately
unitarily equivalent.

Recall that in Lemma 4.3 we proved that any T € A is definable in the lan-
guage L. We will now prove that the rank of the operator T is coded in the
theory THS,.
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Case 1: Suppose rank(T) = m. — Then, the sentence

inf sgpmax{%dnmn ~ 1], max |(Tew, T,

|Tv = (Prro, v+ - - + Prry,, v)”} =0 (4.1)

is part of the theory THS,, and it axiomatizes rank(T") = m.
Case 2: Suppose rank(T) = Ryg. — Consider the following scheme indexed by
m € N>
inf max{max|||Tvi|| — 1], max (Tvi7ij>|} =0. (4.2)
i<m 1<j<m

V1.V
Then, the scheme (4.2) is part of the theory IHS,, and axiomatizes rank(7T") = oo.

The sentence (4.2) and the scheme (4.1) imply that if 7€ Aand me{0,1,...,R}
is such that rank(T") = m, then rank(®(T)) = m, because ®(T') is the interpreta-
tion of T in (Ha,ms) which models THS,;. Hence id4 and ® are AUE, implying
that (Hip,71) and (Hg,ms) are approximately isomorphic, thus the theory THS; is
Ng-categorical up to perturbations. O

THEOREM 4.5. — Assume the theory IHS,: is model-complete. Then the theory
THS,; is Wg-stable up to perturbations.

Proof. — Let (H, ) be a separable model of IHS; and let A be the C*-algebra
generated by {7(gn)},cn- By Lemma 2.25 we can write

(H,A)= (Heo H A ® AY),

where the subalgebra A. are composed only by compact operators, and the sub-
algebra Al has no compact operators. Also, A. and Al act over H. and H
respectively. The algebra A, is the topological closure of the x-algebra generated
by the family

{PI‘HC W(gn) ch }nEN :

In the same way, the algebra A is the topological closure of the x-algebra generated
by the family

{PI‘HCL T(gn) L }neN'

Now, if we write 7 for the restriction of 7 to H--, we can define the representation
(H1,7) = @,c,(HF,75). This representation is a Hilbert space with an action

where all operators have rank Ry. Finally let (H @ Hq, 7@ 7) be the representation
coming from the direct sum.

Claim 1: (H ® Hy,m @ 7) | IHS,. — Let B the C*-algebra generated by
the operators {m @ 7(gn)},cy. We denote by ¢ the *-morphism induced by the
assignment ¢(m(g,)) = 7 ® 7(gn). The extension @ of ¢ to A obtained by linearity
and continuity is a representation of A in B(H @ H;) whose image is B. In this
setting we have again two representations of A, first id 4 the representation that
sends each T € A to itself, and ®. The subalgebra of compact operators of both
algebras A and B, appear in the copy of (H,, m.) inside each sum, and by Fact 2.23
they are isomorphic; the non-compact operators, which appear in (H2,7}) and in
(Hy,7) all have rank Ny. It follows by Fact 2.24 that the representations (H, )
and (H @ Hy, 7 ® 7) are AUE and thus satisfy the same theory THS,.
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Since THS,; is model complete, we have
(H,m)x (H® Hi,m® 7).

We will prove that the elementary superstructure (H ® Hy,m @ 7) is Np-saturated
up to perturbations over (H, ) and thus, since (H,7) was any separable model of
THS,;, this shows that THS, is Ng-stable up to perturbations.

Let (K, p) = (H,m) be an elementary separable superstructure. As in Claim 1,
we also have that (K @ Hy,p @ 7) = IHS, and since THS, is model-complete,
(K,p) < (K®Hy, p®T). By construction of (K@ Hy, p®T), we can write K @ Hy =
HoHY and p® 7 = 7@ p/, where p/ = p[yL. By construction, the C*-algebras
induced by the representations 7 and p’ over H; and H' respectively, are free of
compact operators. We get again using Fact 2.24 that these two representations are
approximately unitarily equivalent and so for every € > 0 there is a unitary map
O. : Hy — H* such that lim._,¢||m2(g9) — O.m1(g9)O|| = 0 for each g € G. Then
for all € > 0 we have the following diagram

ideo;
(HoH,n®1)¢ — ——(HOH 7D )

b b

(H, ) . (K. p)
where the map id is the identity map over H. O
OBSERVATION 4.6. — Let G be a finite group, and let m be a representation of G

on an infinite dimensional Hilbert space H. Following the notation of Section 3
we can write H = H™ @ H™ . Using the notation from Theorem 4.5, we have
H.= H%"™ and H} = H™.

Example 4.7.— Let G be a countable amenable group, and consider
Th(cola(G), 0Ag). By [9, Theorem 2.8] this theory is the model companion of
the theory of G-representations and thus it is model complete. By Theorem 4.5 we
get that Th(ocols(G), c0Ag) is Ng-stable up to perturbations; it was already known
by [9, Section 3] that it is superstable.

The special case where G = Z was considered in [8] and the model companion
was characterized as the collection of expansions (H,7(n) : n € Z) where the
spectrum of 7(1) is S. In [4] it was proved that this expansion is No-stable up to
perturbations, a special case of Theorem 4.5.
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