We prove that character sheaves of a reductive group defined over any characteristic have nilpotent singular support, partially extending the work of [5, 16] to positive characteristic. We do this by introducing a category of tame perverse sheaves and studying its properties.
Keywords: isotriviality, log-selfishness, Gauß law
Kostas I. Psaromiligkos 1

@article{CML_2025__17__1_0, author = {Kostas I. Psaromiligkos}, title = {Character sheaves in characteristic $p$ have nilpotent singular support}, journal = {Confluentes Mathematici}, pages = {1--10}, publisher = {Institut Camille Jordan}, volume = {17}, year = {2025}, doi = {10.5802/cml.97}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.97/} }
TY - JOUR AU - Kostas I. Psaromiligkos TI - Character sheaves in characteristic $p$ have nilpotent singular support JO - Confluentes Mathematici PY - 2025 SP - 1 EP - 10 VL - 17 PB - Institut Camille Jordan UR - https://cml.centre-mersenne.org/articles/10.5802/cml.97/ DO - 10.5802/cml.97 LA - en ID - CML_2025__17__1_0 ER -
%0 Journal Article %A Kostas I. Psaromiligkos %T Character sheaves in characteristic $p$ have nilpotent singular support %J Confluentes Mathematici %D 2025 %P 1-10 %V 17 %I Institut Camille Jordan %U https://cml.centre-mersenne.org/articles/10.5802/cml.97/ %R 10.5802/cml.97 %G en %F CML_2025__17__1_0
Kostas I. Psaromiligkos. Character sheaves in characteristic $p$ have nilpotent singular support. Confluentes Mathematici, Tome 17 (2025), pp. 1-10. doi : 10.5802/cml.97. https://cml.centre-mersenne.org/articles/10.5802/cml.97/
[1] Perverse Sheaves and Applications to Representation Theory, Mathematical Surveys and Monographs, 258, American Mathematical Society, 2021 | DOI | MR | Zbl
[2] The singular support of an -adic sheaf, Tunis. J. Math., Volume 6 (2024) no. 4, pp. 703-734 | DOI | MR | Zbl
[3] Constructible sheaves are holonomic, Sel. Math., New Ser., Volume 22 (2016) no. 4, pp. 1797-1819 | DOI | MR | Zbl
[4] Faisceaux pervers. Actes du colloque ‘Analyse et Topologie sur les Espaces Singuliers’. Partie I, Astérisque, 100, Société Mathématique de France, 1982 | Numdam | Zbl
[5] Admissible modules on a symmetric space, Orbites unipotentes et représentations. III. Orbites et faisceaux pervers (Astérisque), Volume 173-174, Société Mathématique de France, 1989, pp. 199-255 | Zbl
[6] Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1), dirigé par Alexander Grothendieck. Augmenté de deux exposés de M. Raynaud. Revêtements étales et groupe fondamental. Exposés I à XIII, Lecture Notes in Mathematics, 224, Springer, 1971 | DOI | Zbl
[7] The tame site of a scheme, Invent. Math., Volume 223 (2021) no. 2, pp. 379-443 | DOI | MR | Zbl
[8] Sheaves on Manifolds, Grundlehren der Mathematischen Wissenschaften, 292, Springer, 1990 | DOI | MR | Zbl
[9] On different notions of tameness in arithmetic geometry, Math. Ann., Volume 346 (2010) no. 3, pp. 641-668 | DOI | MR | Zbl
[10] Character sheaves. I, Adv. Math., Volume 56 (1985) no. 3, pp. 193-237 | DOI | Zbl
[11] Character sheaves. II, Adv. Math., Volume 57 (1985) no. 3, pp. 226-265 | DOI | Zbl
[12] Character sheaves. III, Adv. Math., Volume 57 (1985) no. 3, pp. 266-315 | DOI | Zbl
[13] Character sheaves. IV, Adv. Math., Volume 59 (1986) no. 1, pp. 1-63 | DOI | Zbl
[14] Character sheaves. V, Adv. Math., Volume 61 (1986) no. 2, pp. 103-155 | DOI | Zbl
[15] Character sheaves, Orbites unipotentes et représentations III. Orbites et faisceaux pervers (Astérisque), Volume 173-174, Société Mathématique de France, 1989, pp. 111-198 | Numdam | MR | Zbl
[16] Characteristic varieties of character sheaves, Invent. Math., Volume 93 (1988) no. 2, pp. 405-418 | DOI | MR | Zbl
[17] The characteristic cycle and the singular support of a constructible sheaf, Invent. Math., Volume 207 (2017) no. 2, pp. 597-695 Correction ibid 216(3):1005–1006, 2019 | DOI | MR | Zbl
[18] Character Sheaves on Reductive Lie Algebras in Positive Characteristic (2024) | arXiv
Cité par Sources :