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CHARACTER SHEAVES IN CHARACTERISTIC p HAVE
NILPOTENT SINGULAR SUPPORT

KOSTAS I. PSAROMILIGKOS

Abstract. We prove that character sheaves of a reductive group defined over any charac-
teristic have nilpotent singular support, partially extending the work of [5, 16] to positive
characteristic. We do this by introducing a category of tame perverse sheaves and studying
its properties.

1. Introduction

1.1. Summary. Character sheaves were constructed by Lusztig in a series of pa-
pers [10, 11, 12, 13, 14] and provide a geometric analog of character theory.

Despite their utility, the theory of character sheaves can be fairly technical.
Shortly after their construction, Lusztig and Laumon conjectured that for reductive
groups defined over k = C, there is a simple characterization of character sheaves
in terms of their singular support.

Let G be a reductive group over k and N ⊆ g be the nilpotent cone of G.
It can be embedded in g∗ using the Killing form, and then we have G × N ⊆
T ∗G ∼= G× g∗. Mirkovic and Vilonen [16] and independently Ginzburg [5] proved
that an irreducible G-equivariant perverse sheaf F on G is a character sheaf if and
only if SS(F) ⊆ G×N . Ginzburg employed the Riemann–Hilbert correspondence
and the classical notion of singular support for D-modules, whereas Mirkovic and
Vilonen used the microlocal definition of singular support of constructible sheaves
on varieties over characteristic 0 defined in [8], which circumvents the use of D-
modules.

For k a field of characteristic p, there was no satisfactory notion of singular
support until 2015, when Beilinson [3] constructed the singular support of a con-
structible étale sheaf with torsion coefficients over any field. Beilinson’s notion was
extended to l-adic sheaves by Barrett [2].

In this paper, inspired by the construction of the tame site by Hübner and
Schmidt [7], we define a category of tame perverse sheaves and study their functorial
properties. This notion captures most sheaves used in the construction of character
sheaves, and tame perverse sheaves behave similarly enough to the characteristic 0
case. We then adapt Mirkovic and Vilonen’s proof to show the following, without
assumptions on char(k).

Theorem 1.1. — Let G be a reductive group over an algebraically closed
field k. Then the singular support of a character sheaf is a subvariety of G×N .
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2 K. I. Psaromiligkos

1.2. Outline. In Section 2, we recall the basic properties of the singular support
that we will need.

In Section 3, we define a general notion of tame perverse sheaves, and show
that the category they form is suitable for our purposes, using Kerz and Schmidt’s
results about tameness of étale coverings [9].

Upon trying to adapt the proof of Mirkovic and Vilonen to positive characteristic,
we stumble in the following problem. Mirkovic and Vilonen use in an essential way
the conormality of singular support to its base in characteristic 0, which does not
remain true in characteristic p. We show that conormality of the singular support is
true for tame perverse sheaves, upon restrictions on the geometry of the ramification
divisor.

In Section 4, we prove Theorem 1.1.
In Section 5, we shortly discuss the possibility of proving the converse direction

to Theorem 1.1, which we argue that would require new techniques. Nonetheless,
we prove it for the small case of SL2, see Theorem 5.1.

Acknowledgments. I thank Sasha Beilinson, Siddharth Mahendraker, Luca Mig-
liorini, Châu Ngô, Simon Riche, Takeshi Saito, Colton Sandvik, Will Sawin and
Tong Zhou for their interest, comments, and valuable discussions.

In particular, I am greatly thankful to Sasha Beilinson for an abundance of
helpful discussions regarding the notion of singular support, and Tong Zhou for
helping correct a previous version of Lemma 3.14. I also thank the anonymous
referee for their critical reading of the manuscript and for suggesting the addition
of Section 5.

This work was part of my PhD thesis at the University of Chicago, advised by
Châu Ngô, to whom I am also thankful for his mentorship and guidance throughout
this process.

2. Review on singular support

2.1. Definition and properties of singular support. For us, “variety” means
“k-scheme of finite type”. We call a variety X smooth if it is smooth relative to
Speck, and then T ∗X denotes the cotangent bundle relative to k.

A test pair for a variety X is a correspondence of the form X
h←− U

f−→ Y , where
U, Y are also varieties. Recall that a morphism f : X → Y of smooth schemes
induces a map of vector bundles df : T ∗Y ×Y X → T ∗X. The following definitions
are from [3, Section 1], see also [2, Section 1.3].

Definition 2.1. — Let h : U → X be a morphism where U, X are smooth and
C ⊆ T ∗X be a closed conical subset of the cotangent bundle of X.

The map h is called C-transversal at a geometric point u → U if for every
v ∈ Ch(u) nonzero we have that dh(v) ∈ T ∗

u U is also non-zero. If it is C-transversal
at every geometric point, we call the map C-transversal.

If h is C-transversal, we define CU = C ×X U , and then the restriction of
dh to CU is a finite map by [3, Lemma 1.2(ii)]. Its image h◦C is then a closed
conical subset of T ∗U , which unravelling the definition has fiber over u given by
(h◦C)u := dh(Ch(u)) ⊆ T ∗

u U .
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Remark 2.2. — A smooth morphism is C-transversal for any C. A test pair
(h, f) is transversal with respect to the zero section if and only if f is smooth, and
it is T ∗X-transversal if and only if h× f is smooth, see [3, Example 1.2].

Definition 2.3. — Let f : U → Y be a morphism where U, Y are smooth and
C ⊆ T ∗Y be a closed conical subset of the cotangent bundle of Y .

The map f is called C-transversal at a geometric point u → U if for every
nonzero v ∈ T ∗

f(u)Y we have df(v) /∈ Cu. If it is C-transversal at every geometric
point, we call the map C-transversal.

Let (h, f) be a test pair with X ← U → Y and C ⊆ T ∗X a closed conical subset
of the cotangent bundle.

Definition 2.4. — The test pair (h, f) is called C-transversal if U, Y are also
smooth, and for every geometric point u → U , h is C-transversal at u and f is
h◦Cu-transversal at u.

For the definition of universal local acyclicity, see [2, Section 1.2].

Definition 2.5. — Assume X is smooth and let F be a constructible sheaf
on X. The C-transversal pair (h, f) is called F-acyclic if f is universally locally
acyclic with respect to h∗F .

We say that F is microsupported on C if every C-transversal test pair is F-
acyclic.

The existence of a minimal conical subvariety as in the next definition is [3,
Theorem 1.5] for sheaves with torsion coefficients and [2, Theorem 1.5] in general.

Definition 2.6. — For any smooth variety X and étale constructible sheaf F ∈
D(X), the singular support SS(F) of F is defined to be the minimal conical closed
subvariety SS(F) ⊆ T ∗X of the cotangent bundle such that F is microsupported
on SS(F).

We recall certain functorial properties of the singular support that we will need.
They are essentially the same as in the characteristic 0 case.

Let r : X → Z be a map of smooth varieties and C be a closed conical subset
of T ∗X whose base is proper over Z. We define r◦C to be the image of dr−1(C) ⊆
T ∗Z×Z X under the projection T ∗Z×Z X → T ∗Z. From the fact that C is a closed
conical subset of T ∗X follows that r◦C is a closed conical subset of T ∗Z.

Proposition 2.7. — Let F ∈ D(X) be a constructible sheaf on a smooth
variety X. Then, the following are true.

(i) The singular support of F is the union of the singular supports of its irre-
ducible constituents.

(ii) Let h : Y → X be a smooth morphism. Then SS(h∗F) = h◦ SS(F).
(iii) Let Z be also a smooth variety and r : X → Z a proper morphism. Then

SS(r∗F) ⊆ r◦ SS(F).

Proof. — The first property is [2, Theorem 1.5(viii)]. The second property is [2,
Theorem 1.5(x)], see also [3, Lemma 2.2].

The third property follows from [2, Lemma 4.4(ii)] since F is microsupported
on SS(F) by definition. □
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Remark 2.8. — The first property is more generally true for SS(F)-transversal
morphisms, but a smooth morphism is transversal to any closed conical subset.
The second property is true when the base of SS(F) is proper over Z.

The inequality in the second property is strict: for an example, consider the
pushforward of the constant sheaf on A1 by the Frobenius.

2.2. Singular support of induction. To prove Theorem 1.1, we also need the
equivalent of [16, Lemma 1.2] for characteristic p.

Let A be a connected algebraic group acting on a variety X. For any connected
subgroup B, consider the following maps

A×X

a

��

ν // A/B ×X

p

��
X X

given by
(a, x)

a

��

ν // (aB, x)

p

��
a−1 · x x.

For a B-equivariant constructible sheaf F ∈ DB(X), there exists a unique F̃ ∈
DA(A/B ×X) such that a∗F = ν∗F̃ .

Definition 2.9. — The functor ΓA
B : DB(X)→ DA(X) defined by F = p∗F̃ ∈

DA(X) is called the induction functor.

Lemma 2.10. — Let G be reductive and B a Borel subgroup. Then, for F ∈
DB(X), we have

SS
(
ΓG

BF
)
⊆ G · SS(F).

Proof. — The proof is the same as in [16, Lemma 1.2] and [16, Lemma B2], since
all the steps involve properties included in Proposition 2.7. We add the assumption
that B is a Borel so that G/B is already proper and thus we do not need to
take a compactification as in the proof of [16, Lemma B2]. This is important as
the existence of compactifications with properties as in loc. cit. is not known in
characteristic p. For the same reason we do not need to take the closure of the right
hand side in our statement. □

3. Tame perverse sheaves

3.1. Definition of a tame perverse sheaf. Let X be a smooth variety over an
algebraically closed field k. All sheaves we consider are assumed to be l-adic for
l ̸= char(k).

We denote by the letter E any constant sheaf. Let U ⊆ X be a locally closed
subset. We recall a well-known definition.

Definition 3.1. — A local system L on U has finite monodromy if there exists
a finite étale covering map f : Ũ → U such that f∗L = E.

We also recall the following [9, Section 1].
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Definition 3.2. — Let C be a proper, connected and regular curve of finite
type over Spec(k) and C ⊆ C an open subscheme. Every point x ∈ C \ C defines
a valuation vx on k(C). An étale covering of curves C ′ → C is called tame if for
every x ∈ C \ C the valuation vx is tamely ramified in k(C ′) | k(C).

Finally, we recall one of the several equivalent definitions for tameness of an étale
covering in higher dimensions in [9, Section 4], see also [7, Definition 5.1].

Definition 3.3. — An étale covering Y → X is called tame if for every mor-
phism C → X with C regular, the base change Y ×X C → C is tame.

Definition 3.4. — Let X = Spec(A) be an smooth variety of dimension n
and π1, . . . , πn a local system of parameters around a point x ∈ X such that D =
V (π1)∪· · ·∪V (πn) is a simple normal crossings divisor. Let X ′ = X \D ∼= Spec A′.

We call a covering of the form

f : Spec A′[T1, . . . , Tn]/
(

T k1
1 − π1, . . . , T kn

n − πn

)
−→ Spec A′

such that p ∤ ki for any i = 1, . . . , n a standard tame covering.
Example 3.5. — Standard tame coverings are tame étale coverings. For the case

of the complement of a simple normal crossings divisor, these are essentially all of
them, see [9, Theorem 4.4] and [6, Exposé XIII, Proposition 5.1].

The following definitions are motivated by Definition 3.3.
Definition 3.6. — A local system L with finite monodromy will be called tame

if the étale covering f : Ũ → U in Definition 3.1 can be taken to be tame.
Definition 3.7. — An irreducible perverse sheaf IC(U,L) on a smooth vari-

ety X is called tame if L is a tame local system on U . A perverse sheaf on X is
called tame if all its irreducible constituents are tame.
3.2. Properties. In this subsection we show properties of tameness that will be
used later.

Lemma 3.8. — The category Pervtame(X) ⊆ Perv(X) consisting of the tame
perverse sheaves and the morphisms between them is an abelian subcategory of the
category of perverse sheaves and is stable under extensions.

Proof. — Trivial by checking on the level of irreducible constituents. □

The following is in [9], but we provide a proof for completeness.
Lemma 3.9. — Tameness of an étale covering is stable under arbitrary base

change.
Proof. — Let f : Y → X be a tame étale covering and g : Z → X a morphism.

Then for an arbitrary morphism C → Z where C is a regular curve, we get the
following diagram

Y ×X Z ×Z C C

Y ×X Z Z

Y X
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It is enough to prove that the upper morphism of curves is tame. This follows by
Y ×X Z ×Z C ∼= Y ×X C and the tameness of Y → X. □

For a smooth morphism f : X → Y , we denote by f† the functor f∗[d] as
in [1]. We remark that Mirkovic and Vilonen use f◦ for the same functor, see [16,
Notation].

Lemma 3.10. — Let f : X → Y be a smooth morphism with connected fibers,
and F a tame perverse sheaf on Y . Then f†F is tame.

Proof. — Since f† is t-exact by [4, Section 4.2.4], we can assume F is irreducible.
We write it as F = IC(Y0,L) for an appropriate locally closed irreducible subset
of Y . Since smoothness is preserved by arbitrary base change, we can also restrict
f to the preimage f−1(Y0).

Then, f†F ∼= IC(f−1(Y0), f∗L), and is irreducible by [1, Theorem 3.6.6]. By
Definition 3.6 there must be a tame étale covering g : U → Y0 such that g∗F = E.
Therefore, by the diagram

U ×Y0 f−1(Y0)

f ′

��

g′
// f−1(Y0)

f

��
U

g
// Y0

and compatibility of pullbacks with composition, we have g′∗f∗L = f ′∗g∗L =
f ′∗E = E. Thus, g′ is an étale covering trivializing f∗L. By Lemma 3.9, g′ is also
tame, therefore f†F is tame. □

Notice that, in general, pushforwards do not preserve tameness even under very
strong assumptions.

Example 3.11. — Consider a projective wildly ramified covering of curves f :
X → Y . This decomposes as X

i−→ Y × P1 p−→ Y . F = i∗E is a tame sheaf, while
p∗F = f∗E is not. We remark that p is a smooth proper map.

On a torus, tame local systems coincide with Kummer local systems. Indeed,
for n ∈ N, let n : T → T be the nth power isogeny n(t) = tn.

Lemma 3.12. — For a torus T , a local system L is tame if and only if n∗L ∼= E
for some n coprime to p.

Proof. — Let R = k[x±
1 , . . . , x±

k ] and T = Spec R. Since n∗L = E, L trivializes
under the covering n : Spec R[t1, . . . , tk]/(tn

1 − x1, . . . , tn
k − xk)→ Spec R, which is

a standard tame covering since (n, p) = 1, see Definition 3.4.
If L is tame, then it must trivialize under some tame covering f . Since T = An\D

where D = {x1 = 0, . . . , xn = 0}, f can be taken to be a standard tame covering
by Example 3.5, therefore of the form f : Spec R[t1, . . . , tk]/(tn1

1 −x1, . . . , tnk

k −xk),
where (ni, p) = 1 for all i = 1, . . . , k. Defining n =

∏
ni, we see that we can write n

as a composition g ◦ f , and therefore n also trivializes L, since n∗L = (g ◦ f)∗L =
g∗E = E. □

We show that conormality of the singular support still holds in characteristic p
for tame perverse sheaves upon conditions on the geometry of the ramification
divisor.
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Definition 3.13. — Let X be a variety and D ⊂ X a closed subvariety. A map
f : X̃ → X will be a called a uniform resolution of D if

(1) X̃ is smooth and f is proper and birational.
(2) f−1(D) is a simple normal crossings divisor in X̃.
(3) f is a stratified submersion on tangent spaces for the stratification D =⊔

i∈I Di by smooth strata of codimension i.

Lemma 3.14. — Let X be a smooth variety over an algebraically closed field k.
If F is a tame perverse sheaf on X such that for every irreducible constituent
IC(U,L) we have that D := U \U has a uniform resolution, then SS(F) is conormal
to its base.

Proof. — Assume without loss of generality that F := IC(U,L) is irreducible.
If D is already a simple normal crossings divisor, the assertion follows from [17,
Lemma 3.3].

For the general case, shrink U by intersecting with the open locus where f is an
isomorphism. Consider the diagram

f−1(U)

g

��

j̃
// X̃

f

��
U

j
// X

where j, j̃ are inclusions and g is the restriction of f to f−1(U).
We define G := j̃!g

∗L, and notice that

j!L ∼= f∗f∗j!L ∼= f∗G

where the first isomorphism is true because f is an isomorphism over U , and the
second by base change. Therefore, by [3, Lemma 2.2]

SS(j!L) = SS(f∗G) ⊆ f◦ SS(G),

and SS(G) is conormal since f−1(D) is a simple normal crossings divisor and g∗L
is tame.

Assume SS(F) was not conormal. Then there exists z ∈ Di and w not conor-
mal to Di, such that w ∈ SS(F). Therefore, there exists v tangent to Di such
that ⟨w, v⟩ ̸= 0. By property (3), there exists v′ tangent to f−1(Di) such that
⟨df(w), v′⟩ ≠ 0, and by conormality of SS(G) we have a contradiction. □

Remark 3.15. — For the case of character sheaves treated in this paper we need
conormality for the Bruhat stratification, which admits the Bott–Samelson reso-
lution. In particular, let w ∈ W an element of the Weyl group and Yw = BwB.
Choose a reduced expression w = s1 . . . sn. Then the Bott–Samelson resolution is

Ys1 ×B · · · ×B Ysn
−→ Yw

The Bott–Samelson resolution is uniform by B-equivariance.

Remark 3.16. — For a counterexample to conormality when F is not tame, see [3,
Example 1.6].



8 K. I. Psaromiligkos

4. Proof of the main theorem

We adapt Mirkovic and Vilonen’s proof to show Theorem 1.1.
First, we recall the definition of character sheaves following [15, Sections 4 & 5].

Let G be a connected reductive group over an algebraically closed field k, and T a
maximal torus of G. Fix a Borel B = TU containing T with unipotent radical U .
Let Φ be the set of roots of G and ∆ ⊆ Φ the choice of positive roots defined by B.

Every root a ∈ Φ provides us with an one-parameter subgroup xa : k→ G. Let
Xa := im(xa) denote the image.

For an element w ∈ W , we define Rw := {a ∈ Φ | a ∈ ∆,−w−1a ∈ ∆}. We
denote by Uw ⊆ U the subgroup of U generated by T and the Xa for a ∈ Rw.

We fix representatives ẇ ∈ NG(T )/T for the elements w ∈ W . By Bruhat
decomposition, G =

⊔
w ∈W BẇB. We write Gw := BẇB and we remark as in [15,

Section 4.1.1] that the map Uw × T × U → Gw defined by (u, t, u′) 7→ uẇtu′ is
an isomorphism of varieties, which provides us with a projection pr : Gw → T by
setting pr(uẇtu′) = t.

For a Kummer local system L on T , we define Lw :=pr∗ L, and AL
w :=IC(Gw,Lw).

Then, as in [16, Section 2.1], we can define character sheaves in terms of the induc-
tion functor ΓG

B : DB(G)→ DG(G). We say that a Kummer local system L on T is
fixed by w if w∗L = L. Recall that for a Kummer local system L fixed by w ∈ W ,
AL

w is a B-equivariant perverse sheaf on G by [15, Lemma 4.1.2].
For a semisimple complex, we call irreducible constituents the simple perverse

sheaves appearing as shifts of direct summands.
Definition 4.1. — Character sheaves are the irreducible constituents of the

complexes KL
w := ΓG

B(AL
w) for all choices of w ∈ W and a Kummer local system L

on T fixed by w.
Finally, we prove Theorem 1.1.
Proof. — Let F be a character sheaf on G. By Definition 4.1, there exists a

Kummer local system L on T and an element w ∈W such that L is fixed by w and
F is an irreducible constituent of KL

w . By Proposition 2.7(i), SS(F) ⊆ SS(KL
w).

By Lemma 2.10, SS(KL
w) = SS(ΓG

BAL
w) ⊆ G · SS(AL

w). Since N is G-equivariant, it
is enough to show SS(AL

w) ⊆ G×N .
Since L is Kummer, L is tame by Proposition 3.12, and therefore Lw is tame

by Proposition 3.10. Lw is an irreducible local system since L is, and therefore by
Definition 3.7 AL

w is a tame perverse sheaf.
As in [16, Proof of Theorem 2.7], the fiber of the conormal bundle at g of a

Bruhat cell BgB is n ∩ ng where n is the Lie algebra of U , and ng := gng−1.
Since the conormal bundles to Bruhat cells are nilpotent and AL

w is tame, we have
SS(AL

w) ⊆ G×N by Lemma 3.14 applied to the Bott–Samelson resolution. □

5. The converse direction

The harder part of the equivalence in [16, 5] is the converse direction, namely
showing that if a G-equivariant irreducible perverse sheaf F has nilpotent singular
support, it has to be a character sheaf. This may be true in characteristic p as
well, assuming at least F is also tame. Unfortunately, proving such a result would
require new techniques (in this section we shortly discuss why a few reasonable tries
fail).
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First, let us mention that the Lie algebra case of the result has been already
shown in [18, Theorem 5.2]. Of course, the techniques therein lie heavily on the
existence of the Fourier transform, so they do not adapt to the case of groups.

We can also try to imitate Mirkovic and Vilonen’s proof of the converse direc-
tion. If we could prove that the functor ΓN carries sheaves with nilpotent singular
support to sheaves constructible with respect to the Bruhat stratification, as in [16,
Theorem 2.7], we could imitate the proof of [16, Theorem 4.4]. But the proof of
their Theorem 2.7 depends heavily on conormality of the singular support, which in
characteristic p we can only use under the assumptions of Lemma 3.14. Even if we
forget about the technical conditions on the divisor in Lemma 3.14, it is still only
true for tame perverse sheaves. We can assume that F is a tame perverse sheaf,
but there is no guarantee that ΓNF is. Indeed, from [16, Theorem 5.2] follows that
if we take F to be a tame irreducible perverse sheaf that is not a character sheaf,
ΓNF has to not be tame.

In the very small case of SL2, we can show the converse by direct calculations.

Theorem 5.1. — Let F be an irreducible G-equivariant tame perverse sheaf
on G. If SS(F) is a subvariety of G×N , then F is a character sheaf.

Proof. — For the classification of character sheaves in SL2, we refer to [15,
Section 5.4.12]. We also recall that for G = SL2, the G-orbits of the action of G
on itself by conjugation are

(1) The regular semisimple orbits Oλ of G consisting of matrices conjugate to
diag(λ, λ−1), where λ ̸= 1, 0,−1. We denote the union of all Oλ by Greg.

(2) The unipotent orbit C+ of matrices conjugate to upper triangular matrices
with both eigenvalues 1, and the negative unipotent orbit C− of matrices
conjugate to upper triangular matrices with both eigenvalues −1.

(3) The two single point orbits {I}, {−I}.
By the fact that F is G-equivariant, it has to have support on some union of these
orbits. We claim that if F has nonempty support in Greg, then it is supported on
Greg, or is the constant sheaf on G. Indeed, if we assume it just had support on a
union of Oλ, by Lemma 3.14, its singular support would not be nilpotent. Then,
under the notation of [15, Section 5.4.12] F has to be an irreducible constituent of
some Cξ,e or be a constant sheaf, by tameness of F .

If F does not have support in Greg, it has to have support on the union C+∪C−.
By irreducibility, it is supported on one of the two orbits, which we assume for
now that is C+. The centralizer of a u ∈ C+ has just two connected compo-
nents if char(k) ̸= 2, and one if char(k) = 2, therefore the only irreducible G-
equivariant perverse sheaves to consider are the constant sheaf on C+ and, in the
case char(k) ̸= 2, a unique non-constant sheaf G := IC(C+,L), where L is the unique
irreducible G-equivariant non-trivial local system of rank one on C+.

The singular support of the constant sheaf on C+ in any characteristic, due to
its non-zero stalk at the identity matrix I, will include the conormal bundle at I,
which has dimension 3 and therefore cannot be contained in the nilpotent cone.

If char(k) ̸= 2, due to uniqueness of G, it has to be the cuspidal character sheaf
coming from Cξ,s with ξ ̸= 0, 2ξ = 0 in [15, Section 5.4.12], and since F cannot be
constant, F = G. Similarly, if F is supported in C−, it has to be the other cuspidal
sheaf coming from Cξ,s.
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We remark that if char(k) = 2 there are indeed no character sheaves supported
on C+ ∪ C−. □

If we try to consider a larger case, then we have more orbits to consider as well as
a more complicated classification of character sheaves. Arguments as in the above
proof based on geometric considerations on the Lusztig strata could be possible,
but we do not have or are aware of any concrete results in this direction yet.
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