Octonion multiplication and Heawood’s map
Confluentes Mathematici, Volume 5 (2013) no. 2, pp. 79-85.

In this note, the octonion multiplication table is recovered from a regular tesselation of the equilateral two timensional torus by seven hexagons, also known as Heawood’s map.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/cml.9
Classification: 17A35, 05C10, 05C25
Bruno Sévennec 1

1 UMPA, ENS-Lyon, CNRS, 46 Allée d’Italie, 69364 Lyon cedex 07, France.
@article{CML_2013__5_2_79_0,
     author = {Bruno S\'evennec},
     title = {Octonion multiplication and {Heawood{\textquoteright}s} map},
     journal = {Confluentes Mathematici},
     pages = {79--85},
     publisher = {Institut Camille Jordan},
     volume = {5},
     number = {2},
     year = {2013},
     doi = {10.5802/cml.9},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.9/}
}
TY  - JOUR
AU  - Bruno Sévennec
TI  - Octonion multiplication and Heawood’s map
JO  - Confluentes Mathematici
PY  - 2013
SP  - 79
EP  - 85
VL  - 5
IS  - 2
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.9/
DO  - 10.5802/cml.9
LA  - en
ID  - CML_2013__5_2_79_0
ER  - 
%0 Journal Article
%A Bruno Sévennec
%T Octonion multiplication and Heawood’s map
%J Confluentes Mathematici
%D 2013
%P 79-85
%V 5
%N 2
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.9/
%R 10.5802/cml.9
%G en
%F CML_2013__5_2_79_0
Bruno Sévennec. Octonion multiplication and Heawood’s map. Confluentes Mathematici, Volume 5 (2013) no. 2, pp. 79-85. doi : 10.5802/cml.9. https://cml.centre-mersenne.org/articles/10.5802/cml.9/

[1] J. C. Baez. The octonions. Bull. Amer. Math. Soc., 39:145–205, 2002.

[2] B. Bollobas. Modern graph theory., Graduate Texts in Mathematics, Vol. 184. Springer-Verlag, New York-Berlin, 1998.

[3] E. Brown and N. Loehr. Why is PSL(2,7) GL(3,2)?. Amer. Math. Monthly 116:727–731, 2009.

[4] J. H. Conway and D. A. Smith. Quaternions and Octonions: Their Geometry, Arithmetic, and Symmetry. AK Peters, 2003.

[5] R. L. Griess Jr. Sporadic groups, code loops and nonvanishing cohomology. J. Pure Appl. Algebra, 44:191–214, 1987.

[6] P. J. Heawood. Map colour theorem. Quart. J. Pure Appl. Math., 24:332–338, 1980.

[7] D. R. Hughes and F. C. Piper. Projective planes, Graduate Texts in Mathematics, Vol. 6. Springer-Verlag, New York-Berlin, 1973.

[8] J. H. van Lint and R. M. Wilson. A course in combinatorics, Second edition. Cambridge University Press, Cambridge, 2001.

[9] L. Manivel. Configurations of lines and models of Lie algebras. J. Algebra 304:457–486, 2006.

Cited by Sources: