Contramodules are module-like algebraic structures endowed with infinite summation (or, occasionally, integration) operations satisfying natural axioms. Introduced originally by Eilenberg and Moore in 1965 in the case of coalgebras over commutative rings, contramodules experience a small renaissance now after being all but forgotten for three decades between 1970–2000. Here we present a review of various definitions and results related to contramodules (drawing mostly from our monographs, papers, and preprints [69, 70, 81, 71, 66, 92, 78, 82])—including contramodules over corings, topological associative rings, topological Lie algebras and topological groups, semicontramodules over semialgebras, and a “contra version” of the Bernstein–Gelfand–Gelfand category . Several underived manifestations of the comodule-contramodule correspondence phenomenon are discussed.
Revised:
Accepted:
Published online:
Keywords: contramodules, comodules, discrete modules, smooth modules, torsion modules, coalgebras, corings, semialgebras, topological rings, adic completions, topological groups, pro-algebraic groups, topological Lie algebras, Tate Harish-Chandra pairs
Leonid Positselski 1, 2
@article{CML_2021__13_2_93_0, author = {Leonid Positselski}, title = {Contramodules}, journal = {Confluentes Mathematici}, pages = {93--182}, publisher = {Institut Camille Jordan}, volume = {13}, number = {2}, year = {2021}, doi = {10.5802/cml.78}, language = {en}, url = {https://cml.centre-mersenne.org/articles/10.5802/cml.78/} }
Leonid Positselski. Contramodules. Confluentes Mathematici, Volume 13 (2021) no. 2, pp. 93-182. doi : 10.5802/cml.78. https://cml.centre-mersenne.org/articles/10.5802/cml.78/
[1] Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, 189, Cambridge University Press, Cambridge, 1994, xiv+316 pages | DOI | MR
[2] Internal categories and quantum groups, Cornell Univ. Ph.D. Thesis, 1997 (Available from http://www.math.cornell.edu/~maguiar/)
[3] Silting objects, Bull. Lond. Math. Soc., Volume 51 (2019) no. 4, pp. 658-690 | DOI | MR
[4] Introduction to the theory of topological rings and modules, Monographs and Textbooks in Pure and Applied Mathematics, 197, Marcel Dekker, Inc., New York, 1996, vi+502 pages | MR
[5] Coequalizers and free triples, Math. Z., Volume 116 (1970) no. 4, pp. 307-322 | DOI | MR
[6] Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., Volume 95 (1960) no. 3, pp. 466-488 | DOI | MR
[7] -almost perfect commutative rings, J. Algebra, Volume 532 (2019), pp. 323-356 | DOI | MR
[8] Matlis category equivalences for a ring epimorphism, J. Pure Appl. Algebra, Volume 224 (2020) no. 10, p. 106398, 25 pp. | DOI | MR
[9] Covers and direct limits: a contramodule-based approach, Math. Z., Volume 299 (2021) no. 1-2, pp. 1-52 | DOI | MR
[10] Projective covers of flat contramodules, Int. Math. Res. Not. IMRN (2021) (Published online at https://doi.org/10.1093/imrn/rnab202)
[11] Remarks on topological algebras, Mosc. Math. J., Volume 8 (2008) no. 1, p. 1-20, 183 | DOI | MR
[12] A proof of Jantzen conjectures, I. M. Gelʼfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1-50 | MR
[13] Quantization of Hitchin’s integrable system and Hecke eigensheaves, 2000 (Available from http://www.math.utexas.edu/~benzvi/Langlands.html or http://www.math.uchicago.edu/~drinfeld/langlands.html)
[14] Chiral algebras, American Mathematical Society Colloquium Publications, 51, American Mathematical Society, Providence, RI, 2004, vi+375 pages | DOI | MR
[15] Notes on conformal field theory (incomplete), 1991 (Available from http://www.math.sunysb.edu/~kirillov/manuscripts.html)
[16] A certain category of -modules, Funkcional. Anal. i Priložen., Volume 10 (1976) no. 2, pp. 1-8 | MR
[17] On semi-infinite cohomology of finite-dimensional graded algebras, Compos. Math., Volume 146 (2010) no. 2, pp. 480-496 | DOI | MR
[18] Monads and comonads on module categories, J. Algebra, Volume 322 (2009) no. 5, pp. 1719-1747 | DOI | MR
[19] Éléments de mathématique. Topologie générale. Chapitres 1 à 4, Hermann, Paris, 1971, xv+357 pp. (not consecutively paged) pages | MR
[20] Espaces vectoriels topologiques. Chapitres 1 à 5, Masson, Paris, 1981, vii+368 pages (Éléments de mathématique. [Elements of mathematics]) | MR
[21] Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972, v+348 pages | MR
[22] The structure of corings: induction functors, Maschke-type theorem, and Frobenius and Galois-type properties, Algebr. Represent. Theory, Volume 5 (2002) no. 4, pp. 389-410 | DOI | MR
[23] Contramodules. Slides of the presentation at the conference on “Categories in Geometry”, Split, 2007 (Available from http://www.irb.hr/korisnici/zskoda/BrzezinskiSplitSlides.pdf)
[24] Flat connections and (co)modules, New techniques in Hopf algebras and graded ring theory, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2007, pp. 35-52 | MR
[25] Corings and comodules, London Mathematical Society Lecture Note Series, 309, Cambridge University Press, Cambridge, 2003, xii+476 pages | DOI | MR
[26] Exact categories, Expo. Math., Volume 28 (2010) no. 1, pp. 1-69 | DOI | MR
[27] Algebraic number theory (2010), xxiv + 366 pages (Papers from the conference held at the University of Sussex, Brighton, September 1–17, 1965, Including a list of errata) | MR
[28] Tannakian categories, Hodge cycles, motives, and Shimura varieties, Lect. Notes Math. 900, 101-228, Springer-Verlag, Berlin, 1982 | Zbl
[29] Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970, xxvi+700 pages (Avec un appendice ıt Corps de classes local par Michiel Hazewinkel) | MR
[30] Enveloping algebras, Graduate Studies in Mathematics, 11, American Mathematical Society, Providence, RI, 1996, xx+379 pages (Revised reprint of the 1977 translation) | DOI | MR
[31] New approach to Arakelov Geometry, Doctoral Dissertation, University of Bonn, arXiv:0704.2030 [math.AG], 2007
[32] Complete modules and torsion modules, Amer. J. Math., Volume 124 (2002) no. 1, pp. 199-220 http://muse.jhu.edu/journals/american_journal_of_mathematics/v124/124.1dwyer.pdf | MR
[33] Coherent analogues of matrix factorizations and relative singularity categories, Algebra Number Theory, Volume 9 (2015) no. 5, pp. 1159-1292 | DOI | MR
[34] Foundations of relative homological algebra, Mem. Amer. Math. Soc., Volume 55 (1965) | MR
[35] How to make Ext vanish, Bull. London Math. Soc., Volume 33 (2001) no. 1, pp. 41-51 | DOI | MR
[36] Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc., Volume 92 (1984) no. 2, pp. 179-184 | DOI | MR
[37] Semi-infinite homology of Lie, Kac-Moody and Virasoro algebras, Uspekhi Mat. Nauk, Volume 39 (1984) no. 2, pp. 195-196 | MR
[38] Verma modules over a Virasoro algebra, Funktsional. Anal. i Prilozhen., Volume 17 (1983) no. 3, pp. 91-92 | MR
[39] Verma modules over the Virasoro algebra, Topology (Leningrad, 1982) (Lecture Notes in Math.), Volume 1060, Springer, Berlin, 1984, pp. 230-245 | DOI | MR
[40] Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic geometry and number theory (Progr. Math.), Volume 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69-260 | DOI | MR
[41] Positive energy representations of affine vertex algebras, Comm. Math. Phys., Volume 383 (2021) no. 2, pp. 841-891 | DOI | MR
[42] Des catégories abéliennes, Bull. Soc. Math. France, Volume 90 (1962), pp. 323-448 | MR
[43] Algebraic groups over a 2-dimensional local field: some further constructions, Studies in Lie theory (Progr. Math.), Volume 243, Birkhäuser Boston, Boston, MA, 2006, pp. 97-130 | DOI | MR
[44] An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, 16, Cambridge University Press, Cambridge, 1989, xviii+303 pages | MR
[45] Sur quelques points d’algèbre homologique, Tohoku Math. J. (2), Volume 9 (1957), pp. 119-221 | DOI | MR
[46] Infinite abelian groups and homological methods, Ann. of Math. (2), Volume 69 (1959), pp. 366-391 | DOI | MR
[47] Representations of semisimple Lie algebras in the BGG category , Graduate Studies in Mathematics, 94, American Mathematical Society, Providence, RI, 2008, xvi+289 pages | DOI | MR
[48] Acyclicity versus total acyclicity for complexes over Noetherian rings, Doc. Math., Volume 11 (2006), pp. 207-240 | MR
[49] Continuous étale cohomology, Math. Ann., Volume 280 (1988) no. 2, pp. 207-245 | DOI | MR
[50] The homotopy category of complexes of projective modules, Adv. Math., Volume 193 (2005) no. 1, pp. 223-232 | DOI | MR
[51] Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987, xii+145 pages | MR
[52] Tensor structures arising from affine Lie algebras. I, J. Amer. Math. Soc., Volume 6 (1993) no. 4, pp. 905-947 | DOI | MR
[53] Adjoint monads and an isomorphism of the Kleisli categories, J. Algebra, Volume 133 (1990) no. 1, pp. 79-82 | DOI | MR
[54] Noncommutative spaces and flat descent, Max-Planck-Institut für Mathematik (Bonn) preprint MPIM 2004-36, 2004
[55] Noncommutative smooth spaces, The Gelfand Mathematical Seminars, 1996–1999 (Gelfand Math. Sem.), Birkhäuser Boston, Boston, MA, 2000, pp. 85-108 | MR
[56] The stable derived category of a Noetherian scheme, Compos. Math., Volume 141 (2005) no. 5, pp. 1128-1162 | DOI | MR
[57] Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer-Verlag, New York, 1998, xii+314 pages | MR
[58] Injective modules over Noetherian rings, Pacific J. Math., Volume 8 (1958) no. 3, pp. 511-528 http://projecteuclid.org/euclid.pjm/1103039896 | MR
[59] The higher properties of -sequences, J. Algebra, Volume 50 (1978) no. 1, pp. 77-112 | DOI | MR
[60] Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989, xiv+320 pages (Translated from the Japanese by M. Reid) | MR
[61] The mock homotopy category of projectives and Grothendieck duality, Ph. D. Thesis, Australian National University, 2007 (Available from http://www.therisingsea.org/thesis.pdf)
[62] The homotopy category of flat modules, and Grothendieck duality, Invent. Math., Volume 174 (2008) no. 2, pp. 255-308 | DOI | MR
[63] Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990, xx+328 pages (Translated from the Russian and with a preface by D. A. Leites) | DOI | MR
[64] On the homology of completion and torsion, Algebr. Represent. Theory, Volume 17 (2014) no. 1, pp. 31-67 | DOI | MR
[65] Cohomologically cofinite complexes, Comm. Algebra, Volume 43 (2015) no. 2, pp. 597-615 | DOI | MR
[66] Covers, envelopes, and cotorsion theories in locally presentable abelian categories and contramodule categories, J. Algebra, Volume 483 (2017), pp. 83-128 | DOI | MR
[67] Nearly locally presentable categories, Theory Appl. Categ., Volume 33 (2018), pp. 10, 253-264 | MR
[68] Seriya pisem pro polubeskonechnye (ko)gomologii associativnyh algebr. [“A series of letters about the semi-infinite (co)homology of associative algebras”, transliterated Russian], 2000, 2002 (Available from http://positselski.livejournal.com/314.html or http://posic.livejournal.com/413.html)
[69] Homological algebra of semimodules and semicontramodules, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series), 70, Birkhäuser/Springer Basel AG, Basel, 2010, xxiv+349 pages (Appendix C in collaboration with Dmitriy Rumynin; Appendix D in collaboration with Sergey Arkhipov) | DOI | MR
[70] Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence, Mem. Amer. Math. Soc., Volume 212 (2011) no. 996, p. vi+133 | DOI | MR
[71] Contraherent cosheaves, arXiv:1209.2995 [math.CT], 2012–2017
[72] Comodule-contramodule correspondence. Slides of the presentation at the meeting in Třešť, Czech Republic, 2014 (Expanded version. Available from http://math.cas.cz/~positselski/)
[73] Semi-infinite algebraic geometry. Slides of the presentation at the conference “Some Trends in Algebra”, Prague, 2015 (Available from http://math.cas.cz/~positselski/)
[74] Dedualizing complexes and MGM duality, J. Pure Appl. Algebra, Volume 220 (2016) no. 12, pp. 3866-3909 | DOI | MR
[75] Coherent rings, fp-injective modules, dualizing complexes, and covariant Serre-Grothendieck duality, Selecta Math. (N.S.), Volume 23 (2017) no. 2, pp. 1279-1307 | DOI | MR
[76] Contraadjusted modules, contramodules, and reduced cotorsion modules, Mosc. Math. J., Volume 17 (2017) no. 3, pp. 385-455 | DOI | MR
[77] Koszulity of cohomology = -ness + quasi-formality, J. Algebra, Volume 483 (2017), pp. 188-229 | DOI | MR
[78] Abelian right perpendicular subcategories in module categories, arXiv:1705.04960 [math.CT], 2017–2018
[79] Contramodules: their history, and applications in commutative and noncommutative algebra. Slides of the presentation at the external meeting of the Institute of Mathematics of the Czech Academy of Sciences, Zvánovice, 2018 (Available from http://math.cas.cz/~positselski/)
[80] Triangulated Matlis equivalence, J. Algebra Appl., Volume 17 (2018) no. 4, p. 1850067, 44 | DOI | MR
[81] Weakly curved -algebras over a topological local ring, Mém. Soc. Math. Fr. (N.S.), Volume 159 (2018), p. vi+206 | DOI | MR
[82] Flat ring epimorphisms of countable type, Glasg. Math. J., Volume 62 (2020) no. 2, pp. 383-439 | DOI | MR
[83] Smooth duality and co-contra correspondence, J. Lie Theory, Volume 30 (2020) no. 1, pp. 85-144 | MR
[84] Exact categories of topological vector spaces with linear topology, arXiv:2012.15431 [math.CT], 2020–2021
[85] Remarks on derived complete modules and complexes, arXiv:2002.12331 [math.AC], 2020–2021 (To appear in Math. Nachrichten.)
[86] Relative nonhomogeneous Koszul duality, Frontiers in Mathematics, Birkhäuser/Springer, Cham, Switzerland, 2021, xxix+278 pages
[87] Contramodules over pro-perfect topological rings, Forum Math., Volume 34 (2022) no. 1, pp. 1-39 | DOI | MR
[88] On strongly flat and weakly cotorsion modules, Math. Z., Volume 291 (2019) no. 3-4, pp. 831-875 | DOI | MR
[89] Flat morphisms of finite presentation are very flat, Ann. Mat. Pura Appl. (4), Volume 199 (2020) no. 3, pp. 875-924 | DOI | MR
[90] -tilting theory, Pacific J. Math., Volume 301 (2019) no. 1, pp. 297-334 | DOI | MR
[91] Topologically semisimple and topologically perfect topological rings, arXiv:1909.12203 [math.CT], 2019–2021 (To appear in Publicacions Matemàtiques.)
[92] The tilting-cotilting correspondence, Int. Math. Res. Not. IMRN, Volume 2021 (2021) no. 1, pp. 191-276 | DOI | MR
[93] Closure properties of , arXiv:2110.13105 [math.RA], 2021
[94] Realisation functors in tilting theory, Math. Z., Volume 288 (2018) no. 3-4, pp. 965-1028 | DOI | MR
[95] Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 40, Springer-Verlag, Berlin, 2010, xvi+464 pages | DOI | MR
[96] Characters of irreducible representations of the Virasoro algebra, Math. Z., Volume 185 (1984) no. 1, pp. 1-21 | DOI | MR
[97] Uniform structures on topological groups and their quotients, Advanced Book Program, McGraw-Hill International Book Co., New York, 1981, xi+276 pages | MR
[98] Galois cohomology, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002, x+210 pages (Translated from the French by Patrick Ion and revised by the author) | MR
[99] Approximations of complete modules by complete big Cohen-Macaulay modules over a Cohen-Macaulay local ring, Algebr. Represent. Theory, Volume 12 (2009) no. 2-5, pp. 385-400 | DOI | MR
[100] Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975, viii+309 pages | MR
[101] On purity and applications to coderived and singularity categories, arXiv:1412.1615 [math.CT], 2014
[102] Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969, vii+336 pages | MR
[103] The category of the triples in a category (Spanish), An. Inst. Mat. Univ. Nac. Autónoma México, Volume 5 (1965), pp. 21-34 | MR
[104] Localizations of algebraic categories. II, J. Pure Appl. Algebra, Volume 133 (1998) no. 3, pp. 317-326 | DOI | MR
[105] Real reductive groups. I, Pure and Applied Mathematics, 132, Academic Press, Inc., Boston, MA, 1988, xx+412 pages | MR
[106] Comodules and contramodules, Glasg. Math. J., Volume 52 (2010) no. A, pp. 151-162 | DOI | MR
[107] Algebraic theories, Lecture Notes Series, No. 22, Matematisk Institut, Aarhus Universitet, Aarhus, 1970, ii+131 pp. (errata insert) pages (Lectures Autumn 1969) | MR
[108] Affine Jacquet functors and Harish-Chandra categories, Adv. Math., Volume 208 (2007) no. 1, pp. 40-74 | DOI | MR
[109] Categories of modules over an affine Kac–Moody algebra and finiteness of the Kazhdan–Lusztig tensor product, J. Algebra, Volume 319 (2008) no. 8, pp. 3175-3196 | DOI | MR
[110] On flatness and completion for infinitely generated modules over Noetherian rings, Comm. Algebra, Volume 39 (2011) no. 11, pp. 4221-4245 | DOI | MR
[111] A separated cohomologically complete module is complete, Comm. Algebra, Volume 43 (2015) no. 2, pp. 616-622 | DOI | MR
Cited by Sources: