Contramodules
Confluentes Mathematici, Volume 13 (2021) no. 2, pp. 93-182.

Contramodules are module-like algebraic structures endowed with infinite summation (or, occasionally, integration) operations satisfying natural axioms. Introduced originally by Eilenberg and Moore in 1965 in the case of coalgebras over commutative rings, contramodules experience a small renaissance now after being all but forgotten for three decades between 1970–2000. Here we present a review of various definitions and results related to contramodules (drawing mostly from our monographs, papers, and preprints [69, 70, 81, 71, 66, 92, 78, 82])—including contramodules over corings, topological associative rings, topological Lie algebras and topological groups, semicontramodules over semialgebras, and a “contra version” of the Bernstein–Gelfand–Gelfand category O. Several underived manifestations of the comodule-contramodule correspondence phenomenon are discussed.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/cml.78
Classification: 16T15, 16W60, 16W80, 18E10, 17B65, 22D12, 22E65
Keywords: contramodules, comodules, discrete modules, smooth modules, torsion modules, coalgebras, corings, semialgebras, topological rings, adic completions, topological groups, pro-algebraic groups, topological Lie algebras, Tate Harish-Chandra pairs

Leonid Positselski 1, 2

1 Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, 115 67 Prague 1, Czech Republic
2 Laboratory of Algebra and Number Theory, Institute for Information Transmission Problems, Moscow 127051, Russia
License: CC-BY-NC-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CML_2021__13_2_93_0,
     author = {Leonid Positselski},
     title = {Contramodules},
     journal = {Confluentes Mathematici},
     pages = {93--182},
     publisher = {Institut Camille Jordan},
     volume = {13},
     number = {2},
     year = {2021},
     doi = {10.5802/cml.78},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.78/}
}
TY  - JOUR
AU  - Leonid Positselski
TI  - Contramodules
JO  - Confluentes Mathematici
PY  - 2021
SP  - 93
EP  - 182
VL  - 13
IS  - 2
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.78/
DO  - 10.5802/cml.78
LA  - en
ID  - CML_2021__13_2_93_0
ER  - 
%0 Journal Article
%A Leonid Positselski
%T Contramodules
%J Confluentes Mathematici
%D 2021
%P 93-182
%V 13
%N 2
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.78/
%R 10.5802/cml.78
%G en
%F CML_2021__13_2_93_0
Leonid Positselski. Contramodules. Confluentes Mathematici, Volume 13 (2021) no. 2, pp. 93-182. doi : 10.5802/cml.78. https://cml.centre-mersenne.org/articles/10.5802/cml.78/

[1] Jiří Adámek; Jiří Rosický Locally presentable and accessible categories, London Mathematical Society Lecture Note Series, 189, Cambridge University Press, Cambridge, 1994, xiv+316 pages | DOI | MR

[2] Marcelo Aguiar Internal categories and quantum groups, Cornell Univ. Ph.D. Thesis, 1997 (Available from http://www.math.cornell.edu/~maguiar/)

[3] Lidia Angeleri Hügel Silting objects, Bull. Lond. Math. Soc., Volume 51 (2019) no. 4, pp. 658-690 | DOI | MR

[4] V. I. Arnautov; S. T. Glavatsky; A. V. Mikhalev Introduction to the theory of topological rings and modules, Monographs and Textbooks in Pure and Applied Mathematics, 197, Marcel Dekker, Inc., New York, 1996, vi+502 pages | MR

[5] Michael Barr Coequalizers and free triples, Math. Z., Volume 116 (1970) no. 4, pp. 307-322 | DOI | MR

[6] Hyman Bass Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc., Volume 95 (1960) no. 3, pp. 466-488 | DOI | MR

[7] Silvana Bazzoni; Leonid Positselski S-almost perfect commutative rings, J. Algebra, Volume 532 (2019), pp. 323-356 | DOI | MR

[8] Silvana Bazzoni; Leonid Positselski Matlis category equivalences for a ring epimorphism, J. Pure Appl. Algebra, Volume 224 (2020) no. 10, p. 106398, 25 pp. | DOI | MR

[9] Silvana Bazzoni; Leonid Positselski Covers and direct limits: a contramodule-based approach, Math. Z., Volume 299 (2021) no. 1-2, pp. 1-52 | DOI | MR

[10] Silvana Bazzoni; Leonid Positselski; Jan Šťovíček Projective covers of flat contramodules, Int. Math. Res. Not. IMRN (2021) (Published online at https://doi.org/10.1093/imrn/rnab202)

[11] A. Beilinson Remarks on topological algebras, Mosc. Math. J., Volume 8 (2008) no. 1, p. 1-20, 183 | DOI | MR

[12] A. Beĭlinson; J. Bernstein A proof of Jantzen conjectures, I. M. Gelʼfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 1-50 | MR

[13] A. Beilinson; V. Drinfeld Quantization of Hitchin’s integrable system and Hecke eigensheaves, 2000 (Available from http://www.math.utexas.edu/~benzvi/Langlands.html or http://www.math.uchicago.edu/~drinfeld/langlands.html)

[14] Alexander Beilinson; Vladimir Drinfeld Chiral algebras, American Mathematical Society Colloquium Publications, 51, American Mathematical Society, Providence, RI, 2004, vi+375 pages | DOI | MR

[15] A. Belinson; B. Feigin; B. Mazur Notes on conformal field theory (incomplete), 1991 (Available from http://www.math.sunysb.edu/~kirillov/manuscripts.html)

[16] I. N. Bernšteĭn; I. M. Gelʼfand; S. I. Gelʼfand A certain category of 𝔤-modules, Funkcional. Anal. i Priložen., Volume 10 (1976) no. 2, pp. 1-8 | MR

[17] Roman Bezrukavnikov; Leonid Positselski On semi-infinite cohomology of finite-dimensional graded algebras, Compos. Math., Volume 146 (2010) no. 2, pp. 480-496 | DOI | MR

[18] Gabriella Böhm; Tomasz Brzeziński; Robert Wisbauer Monads and comonads on module categories, J. Algebra, Volume 322 (2009) no. 5, pp. 1719-1747 | DOI | MR

[19] N. Bourbaki Éléments de mathématique. Topologie générale. Chapitres 1 à 4, Hermann, Paris, 1971, xv+357 pp. (not consecutively paged) pages | MR

[20] Nicolas Bourbaki Espaces vectoriels topologiques. Chapitres 1 à 5, Masson, Paris, 1981, vii+368 pages (Éléments de mathématique. [Elements of mathematics]) | MR

[21] A. K. Bousfield; D. M. Kan Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972, v+348 pages | MR

[22] Tomasz Brzeziński The structure of corings: induction functors, Maschke-type theorem, and Frobenius and Galois-type properties, Algebr. Represent. Theory, Volume 5 (2002) no. 4, pp. 389-410 | DOI | MR

[23] Tomasz Brzeziński Contramodules. Slides of the presentation at the conference on “Categories in Geometry”, Split, 2007 (Available from http://www.irb.hr/korisnici/zskoda/BrzezinskiSplitSlides.pdf)

[24] Tomasz Brzeziński Flat connections and (co)modules, New techniques in Hopf algebras and graded ring theory, K. Vlaam. Acad. Belgie Wet. Kunsten (KVAB), Brussels, 2007, pp. 35-52 | MR

[25] Tomasz Brzezinski; Robert Wisbauer Corings and comodules, London Mathematical Society Lecture Note Series, 309, Cambridge University Press, Cambridge, 2003, xii+476 pages | DOI | MR

[26] Theo Bühler Exact categories, Expo. Math., Volume 28 (2010) no. 1, pp. 1-69 | DOI | MR

[27] Algebraic number theory (2010), xxiv + 366 pages (Papers from the conference held at the University of Sussex, Brighton, September 1–17, 1965, Including a list of errata) | MR

[28] Pierre Deligne; James S. Milne Tannakian categories, Hodge cycles, motives, and Shimura varieties, Lect. Notes Math. 900, 101-228, Springer-Verlag, Berlin, 1982 | Zbl

[29] Michel Demazure; Pierre Gabriel Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Éditeur, Paris; North-Holland Publishing Co., Amsterdam, 1970, xxvi+700 pages (Avec un appendice ıt Corps de classes local par Michiel Hazewinkel) | MR

[30] Jacques Dixmier Enveloping algebras, Graduate Studies in Mathematics, 11, American Mathematical Society, Providence, RI, 1996, xx+379 pages (Revised reprint of the 1977 translation) | DOI | MR

[31] Nikolai Durov New approach to Arakelov Geometry, Doctoral Dissertation, University of Bonn, arXiv:0704.2030 [math.AG], 2007

[32] W. G. Dwyer; J. P. C. Greenlees Complete modules and torsion modules, Amer. J. Math., Volume 124 (2002) no. 1, pp. 199-220 http://muse.jhu.edu/journals/american_journal_of_mathematics/v124/124.1dwyer.pdf | MR

[33] Alexander I. Efimov; Leonid Positselski Coherent analogues of matrix factorizations and relative singularity categories, Algebra Number Theory, Volume 9 (2015) no. 5, pp. 1159-1292 | DOI | MR

[34] Samuel Eilenberg; J. C. Moore Foundations of relative homological algebra, Mem. Amer. Math. Soc., Volume 55 (1965) | MR

[35] Paul C. Eklof; Jan Trlifaj How to make Ext vanish, Bull. London Math. Soc., Volume 33 (2001) no. 1, pp. 41-51 | DOI | MR

[36] Edgar Enochs Flat covers and flat cotorsion modules, Proc. Amer. Math. Soc., Volume 92 (1984) no. 2, pp. 179-184 | DOI | MR

[37] B. L. Feĭgin Semi-infinite homology of Lie, Kac-Moody and Virasoro algebras, Uspekhi Mat. Nauk, Volume 39 (1984) no. 2, pp. 195-196 | MR

[38] B. L. Feĭgin; D. B. Fuchs Verma modules over a Virasoro algebra, Funktsional. Anal. i Prilozhen., Volume 17 (1983) no. 3, pp. 91-92 | MR

[39] B. L. Feĭgin; D. B. Fuchs Verma modules over the Virasoro algebra, Topology (Leningrad, 1982) (Lecture Notes in Math.), Volume 1060, Springer, Berlin, 1984, pp. 230-245 | DOI | MR

[40] Edward Frenkel; Dennis Gaitsgory Local geometric Langlands correspondence and affine Kac-Moody algebras, Algebraic geometry and number theory (Progr. Math.), Volume 253, Birkhäuser Boston, Boston, MA, 2006, pp. 69-260 | DOI | MR

[41] Vyacheslav Futorny; Libor Křižka Positive energy representations of affine vertex algebras, Comm. Math. Phys., Volume 383 (2021) no. 2, pp. 841-891 | DOI | MR

[42] Pierre Gabriel Des catégories abéliennes, Bull. Soc. Math. France, Volume 90 (1962), pp. 323-448 | MR

[43] Dennis Gaitsgory; David Kazhdan Algebraic groups over a 2-dimensional local field: some further constructions, Studies in Lie theory (Progr. Math.), Volume 243, Birkhäuser Boston, Boston, MA, 2006, pp. 97-130 | DOI | MR

[44] K. R. Goodearl; R. B. Warfield An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, 16, Cambridge University Press, Cambridge, 1989, xviii+303 pages | MR

[45] Alexander Grothendieck Sur quelques points d’algèbre homologique, Tohoku Math. J. (2), Volume 9 (1957), pp. 119-221 | DOI | MR

[46] D. K. Harrison Infinite abelian groups and homological methods, Ann. of Math. (2), Volume 69 (1959), pp. 366-391 | DOI | MR

[47] James E. Humphreys Representations of semisimple Lie algebras in the BGG category 𝒪, Graduate Studies in Mathematics, 94, American Mathematical Society, Providence, RI, 2008, xvi+289 pages | DOI | MR

[48] Srikanth Iyengar; Henning Krause Acyclicity versus total acyclicity for complexes over Noetherian rings, Doc. Math., Volume 11 (2006), pp. 207-240 | MR

[49] Uwe Jannsen Continuous étale cohomology, Math. Ann., Volume 280 (1988) no. 2, pp. 207-245 | DOI | MR

[50] Peter Jørgensen The homotopy category of complexes of projective modules, Adv. Math., Volume 193 (2005) no. 1, pp. 223-232 | DOI | MR

[51] V. G. Kac; A. K. Raina Bombay lectures on highest weight representations of infinite-dimensional Lie algebras, Advanced Series in Mathematical Physics, 2, World Scientific Publishing Co., Inc., Teaneck, NJ, 1987, xii+145 pages | MR

[52] D. Kazhdan; G. Lusztig Tensor structures arising from affine Lie algebras. I, J. Amer. Math. Soc., Volume 6 (1993) no. 4, pp. 905-947 | DOI | MR

[53] Mark Kleiner Adjoint monads and an isomorphism of the Kleisli categories, J. Algebra, Volume 133 (1990) no. 1, pp. 79-82 | DOI | MR

[54] Maxim Kontsevich; Alexander Rosenberg Noncommutative spaces and flat descent, Max-Planck-Institut für Mathematik (Bonn) preprint MPIM 2004-36, 2004

[55] Maxim Kontsevich; Alexander L. Rosenberg Noncommutative smooth spaces, The Gelfand Mathematical Seminars, 1996–1999 (Gelfand Math. Sem.), Birkhäuser Boston, Boston, MA, 2000, pp. 85-108 | MR

[56] Henning Krause The stable derived category of a Noetherian scheme, Compos. Math., Volume 141 (2005) no. 5, pp. 1128-1162 | DOI | MR

[57] Saunders Mac Lane Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer-Verlag, New York, 1998, xii+314 pages | MR

[58] Eben Matlis Injective modules over Noetherian rings, Pacific J. Math., Volume 8 (1958) no. 3, pp. 511-528 http://projecteuclid.org/euclid.pjm/1103039896 | MR

[59] Eben Matlis The higher properties of R-sequences, J. Algebra, Volume 50 (1978) no. 1, pp. 77-112 | DOI | MR

[60] Hideyuki Matsumura Commutative ring theory, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989, xiv+320 pages (Translated from the Japanese by M. Reid) | MR

[61] Daniel Murfet The mock homotopy category of projectives and Grothendieck duality, Ph. D. Thesis, Australian National University, 2007 (Available from http://www.therisingsea.org/thesis.pdf)

[62] Amnon Neeman The homotopy category of flat modules, and Grothendieck duality, Invent. Math., Volume 174 (2008) no. 2, pp. 255-308 | DOI | MR

[63] A. L. Onishchik; È. B. Vinberg Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1990, xx+328 pages (Translated from the Russian and with a preface by D. A. Leites) | DOI | MR

[64] Marco Porta; Liran Shaul; Amnon Yekutieli On the homology of completion and torsion, Algebr. Represent. Theory, Volume 17 (2014) no. 1, pp. 31-67 | DOI | MR

[65] Marco Porta; Liran Shaul; Amnon Yekutieli Cohomologically cofinite complexes, Comm. Algebra, Volume 43 (2015) no. 2, pp. 597-615 | DOI | MR

[66] L. Positselski; J. Rosický Covers, envelopes, and cotorsion theories in locally presentable abelian categories and contramodule categories, J. Algebra, Volume 483 (2017), pp. 83-128 | DOI | MR

[67] L. Positselski; J. Rosický Nearly locally presentable categories, Theory Appl. Categ., Volume 33 (2018), pp. 10, 253-264 | MR

[68] Leonid Positselski Seriya pisem pro polubeskonechnye (ko)gomologii associativnyh algebr. [“A series of letters about the semi-infinite (co)homology of associative algebras”, transliterated Russian], 2000, 2002 (Available from http://positselski.livejournal.com/314.html or http://posic.livejournal.com/413.html)

[69] Leonid Positselski Homological algebra of semimodules and semicontramodules, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series), 70, Birkhäuser/Springer Basel AG, Basel, 2010, xxiv+349 pages (Appendix C in collaboration with Dmitriy Rumynin; Appendix D in collaboration with Sergey Arkhipov) | DOI | MR

[70] Leonid Positselski Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence, Mem. Amer. Math. Soc., Volume 212 (2011) no. 996, p. vi+133 | DOI | MR

[71] Leonid Positselski Contraherent cosheaves, arXiv:1209.2995 [math.CT], 2012–2017

[72] Leonid Positselski Comodule-contramodule correspondence. Slides of the presentation at the meeting in Třešť, Czech Republic, 2014 (Expanded version. Available from http://math.cas.cz/~positselski/)

[73] Leonid Positselski Semi-infinite algebraic geometry. Slides of the presentation at the conference “Some Trends in Algebra”, Prague, 2015 (Available from http://math.cas.cz/~positselski/)

[74] Leonid Positselski Dedualizing complexes and MGM duality, J. Pure Appl. Algebra, Volume 220 (2016) no. 12, pp. 3866-3909 | DOI | MR

[75] Leonid Positselski Coherent rings, fp-injective modules, dualizing complexes, and covariant Serre-Grothendieck duality, Selecta Math. (N.S.), Volume 23 (2017) no. 2, pp. 1279-1307 | DOI | MR

[76] Leonid Positselski Contraadjusted modules, contramodules, and reduced cotorsion modules, Mosc. Math. J., Volume 17 (2017) no. 3, pp. 385-455 | DOI | MR

[77] Leonid Positselski Koszulity of cohomology = K(π,1)-ness + quasi-formality, J. Algebra, Volume 483 (2017), pp. 188-229 | DOI | MR

[78] Leonid Positselski Abelian right perpendicular subcategories in module categories, arXiv:1705.04960 [math.CT], 2017–2018

[79] Leonid Positselski Contramodules: their history, and applications in commutative and noncommutative algebra. Slides of the presentation at the external meeting of the Institute of Mathematics of the Czech Academy of Sciences, Zvánovice, 2018 (Available from http://math.cas.cz/~positselski/)

[80] Leonid Positselski Triangulated Matlis equivalence, J. Algebra Appl., Volume 17 (2018) no. 4, p. 1850067, 44 | DOI | MR

[81] Leonid Positselski Weakly curved A -algebras over a topological local ring, Mém. Soc. Math. Fr. (N.S.), Volume 159 (2018), p. vi+206 | DOI | MR

[82] Leonid Positselski Flat ring epimorphisms of countable type, Glasg. Math. J., Volume 62 (2020) no. 2, pp. 383-439 | DOI | MR

[83] Leonid Positselski Smooth duality and co-contra correspondence, J. Lie Theory, Volume 30 (2020) no. 1, pp. 85-144 | MR

[84] Leonid Positselski Exact categories of topological vector spaces with linear topology, arXiv:2012.15431 [math.CT], 2020–2021

[85] Leonid Positselski Remarks on derived complete modules and complexes, arXiv:2002.12331 [math.AC], 2020–2021 (To appear in Math. Nachrichten.)

[86] Leonid Positselski Relative nonhomogeneous Koszul duality, Frontiers in Mathematics, Birkhäuser/Springer, Cham, Switzerland, 2021, xxix+278 pages

[87] Leonid Positselski Contramodules over pro-perfect topological rings, Forum Math., Volume 34 (2022) no. 1, pp. 1-39 | DOI | MR

[88] Leonid Positselski; Alexander Slávik On strongly flat and weakly cotorsion modules, Math. Z., Volume 291 (2019) no. 3-4, pp. 831-875 | DOI | MR

[89] Leonid Positselski; Alexander Slávik Flat morphisms of finite presentation are very flat, Ann. Mat. Pura Appl. (4), Volume 199 (2020) no. 3, pp. 875-924 | DOI | MR

[90] Leonid Positselski; Jan Šťovíček -tilting theory, Pacific J. Math., Volume 301 (2019) no. 1, pp. 297-334 | DOI | MR

[91] Leonid Positselski; Jan Šťovíček Topologically semisimple and topologically perfect topological rings, arXiv:1909.12203 [math.CT], 2019–2021 (To appear in Publicacions Matemàtiques.)

[92] Leonid Positselski; Jan Šťovíček The tilting-cotilting correspondence, Int. Math. Res. Not. IMRN, Volume 2021 (2021) no. 1, pp. 191-276 | DOI | MR

[93] Leonid Positselski; Jan Trlifaj Closure properties of lim 𝒞, arXiv:2110.13105 [math.RA], 2021

[94] Chrysostomos Psaroudakis; Jorge Vitória Realisation functors in tilting theory, Math. Z., Volume 288 (2018) no. 3-4, pp. 965-1028 | DOI | MR

[95] Luis Ribes; Pavel Zalesskii Profinite groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 40, Springer-Verlag, Berlin, 2010, xvi+464 pages | DOI | MR

[96] Alvany Rocha-Caridi; Nolan R. Wallach Characters of irreducible representations of the Virasoro algebra, Math. Z., Volume 185 (1984) no. 1, pp. 1-21 | DOI | MR

[97] Walter Roelcke; Susanne Dierolf Uniform structures on topological groups and their quotients, Advanced Book Program, McGraw-Hill International Book Co., New York, 1981, xi+276 pages | MR

[98] Jean-Pierre Serre Galois cohomology, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002, x+210 pages (Translated from the French by Patrick Ion and revised by the author) | MR

[99] Anne-Marie Simon Approximations of complete modules by complete big Cohen-Macaulay modules over a Cohen-Macaulay local ring, Algebr. Represent. Theory, Volume 12 (2009) no. 2-5, pp. 385-400 | DOI | MR

[100] Bo Stenström Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975, viii+309 pages | MR

[101] Jan Šťovíček On purity and applications to coderived and singularity categories, arXiv:1412.1615 [math.CT], 2014

[102] Moss E. Sweedler Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969, vii+336 pages | MR

[103] Roberto Vázquez García The category of the triples in a category (Spanish), An. Inst. Mat. Univ. Nac. Autónoma México, Volume 5 (1965), pp. 21-34 | MR

[104] Enrico M. Vitale Localizations of algebraic categories. II, J. Pure Appl. Algebra, Volume 133 (1998) no. 3, pp. 317-326 | DOI | MR

[105] Nolan R. Wallach Real reductive groups. I, Pure and Applied Mathematics, 132, Academic Press, Inc., Boston, MA, 1988, xx+412 pages | MR

[106] Robert Wisbauer Comodules and contramodules, Glasg. Math. J., Volume 52 (2010) no. A, pp. 151-162 | DOI | MR

[107] G. C. Wraith Algebraic theories, Lecture Notes Series, No. 22, Matematisk Institut, Aarhus Universitet, Aarhus, 1970, ii+131 pp. (errata insert) pages (Lectures Autumn 1969) | MR

[108] Milen Yakimov Affine Jacquet functors and Harish-Chandra categories, Adv. Math., Volume 208 (2007) no. 1, pp. 40-74 | DOI | MR

[109] Milen Yakimov Categories of modules over an affine Kac–Moody algebra and finiteness of the Kazhdan–Lusztig tensor product, J. Algebra, Volume 319 (2008) no. 8, pp. 3175-3196 | DOI | MR

[110] Amnon Yekutieli On flatness and completion for infinitely generated modules over Noetherian rings, Comm. Algebra, Volume 39 (2011) no. 11, pp. 4221-4245 | DOI | MR

[111] Amnon Yekutieli A separated cohomologically complete module is complete, Comm. Algebra, Volume 43 (2015) no. 2, pp. 616-622 | DOI | MR

Cited by Sources: