Polish groups and Baire category methods
Confluentes Mathematici, Volume 8 (2016) no. 1, pp. 89-164.

This article is a slightly modified version of the author’s habilitation thesis, presenting his work on topics related to Polish groups, Baire category methods and metric model theory. Nearly all results presented are not new, though some arguments are. Among new results, we show that, for any countably infinite group Γ, all conjugacy classes in the space of actions of Γ on the Urysohn space are meager; and that the group of bounded isometries of the Urysohn space, endowed with the topology of uniform convergence, is path-connected.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/cml.28
Classification: 22A05, 54E52, 22F50, 54H20, 03E15
Keywords: Polish groups, automorphism groups, Baire category, topological dynamics, minimal homeomorphisms
Julien Melleray 1

1 Université de Lyon; CNRS; Université Lyon 1; Institut Camille Jordan UMR5208, 69622 Villeurbanne Cedex, France
@article{CML_2016__8_1_89_0,
     author = {Julien Melleray},
     title = {Polish groups and {Baire} category methods},
     journal = {Confluentes Mathematici},
     pages = {89--164},
     publisher = {Institut Camille Jordan},
     volume = {8},
     number = {1},
     year = {2016},
     doi = {10.5802/cml.28},
     language = {en},
     url = {https://cml.centre-mersenne.org/articles/10.5802/cml.28/}
}
TY  - JOUR
AU  - Julien Melleray
TI  - Polish groups and Baire category methods
JO  - Confluentes Mathematici
PY  - 2016
SP  - 89
EP  - 164
VL  - 8
IS  - 1
PB  - Institut Camille Jordan
UR  - https://cml.centre-mersenne.org/articles/10.5802/cml.28/
DO  - 10.5802/cml.28
LA  - en
ID  - CML_2016__8_1_89_0
ER  - 
%0 Journal Article
%A Julien Melleray
%T Polish groups and Baire category methods
%J Confluentes Mathematici
%D 2016
%P 89-164
%V 8
%N 1
%I Institut Camille Jordan
%U https://cml.centre-mersenne.org/articles/10.5802/cml.28/
%R 10.5802/cml.28
%G en
%F CML_2016__8_1_89_0
Julien Melleray. Polish groups and Baire category methods. Confluentes Mathematici, Volume 8 (2016) no. 1, pp. 89-164. doi : 10.5802/cml.28. https://cml.centre-mersenne.org/articles/10.5802/cml.28/

[1] O. N. Ageev Conjugacy of a group action to its inverse, Mat. Zametki, Volume 45 (1989) no. 3, p. 3-11, 127

[2] O. N. Ageev On extensions of typical group actions (2012) (preprint available at http://arxiv.org/abs/1212.2660)

[3] Gisela Ahlbrandt; Martin Ziegler Quasi-finitely axiomatizable totally categorical theories, Ann. Pure Appl. Logic, Volume 30 (1986) no. 1, pp. 63-82 Stability in model theory (Trento, 1984) | DOI

[4] Ethan Akin Good measures on Cantor space, Trans. Amer. Math. Soc., Volume 357 (2005) no. 7, p. 2681-2722 (electronic)

[5] R. D. Anderson The algebraic simplicity of certain groups of homeomorphisms, Amer. J. Math., Volume 80 (1958), pp. 955-963

[6] Richard F. Arens; James Eells On embedding uniform and topological spaces, Pacific J. Math., Volume 6 (1956), pp. 397-403

[7] Alexandru G. Atim; Robert R. Kallman The infinite unitary and related groups are algebraically determined Polish groups, Topology Appl., Volume 159 (2012) no. 12, pp. 2831-2840 | DOI

[8] Stefan Banach Théorie des operations linéaires, Chelsea Publishing Co., New York, 1955, vii+254 pages

[9] Howard Becker; Alexander S. Kechris The descriptive set theory of Polish group actions, London Mathematical Society Lecture Note Series, 232, Cambridge University Press, Cambridge, 1996, xii+136 pages

[10] Itaï Ben Yaacov The linear isometry group of the Gurarij space is universal, Proc. Amer. Math. Soc., Volume 142 (2014) no. 7, pp. 2459-2467 | DOI

[11] Itaï Ben Yaacov; Alexander Berenstein; C. Ward Henson; Alexander Usvyatsov Model theory for metric structures, Model theory with applications to algebra and analysis. Vol. 2 (London Math. Soc. Lecture Note Ser.), Volume 350, Cambridge Univ. Press, Cambridge, 2008, pp. 315-427 | DOI

[12] Itaï Ben Yaacov; Alexander Berenstein; Julien Melleray Polish topometric groups, Trans. Amer. Math. Soc., Volume 365 (2013) no. 7, pp. 3877-3897 | DOI

[13] Itaï Ben Yaacov; C. W. Henson Generic orbits and type isolation in the Gurarij space (2014) (to appear in Fund. Math.)

[14] Itaï Ben Yaacov; Julien Melleray Grey subsets of Polish spaces, J. Symb. Log., Volume 80 (2015) no. 4, pp. 1379-1397 | DOI

[15] Itaï Ben Yaacov; Julien Melleray Grey subsets of Polish spaces, J. Symb. Log., Volume 80 (2015) no. 4, pp. 1379-1397 | DOI

[16] Itaï Ben Yaacov; Alexander Usvyatsov Continuous first order logic and local stability, Trans. Amer. Math. Soc., Volume 362 (2010) no. 10, pp. 5213-5259 | DOI

[17] S. Bezuglyi; K. Medynets Full groups, flip conjugacy, and orbit equivalence of Cantor minimal systems, Colloq. Math., Volume 110 (2008) no. 2, pp. 409-429 | DOI

[18] D. Bilge; J. Melleray Elements of finite order in automorphism groups of Homogeneous structures, Contributions to Discrete Mathematics, Volume 2 (2013)

[19] Lewis Bowen Measure conjugacy invariants for actions of countable sofic groups, J. Amer. Math. Soc., Volume 23 (2010) no. 1, pp. 217-245 | DOI

[20] P. J. Cameron; A. M. Vershik Some isometry groups of the Urysohn space, Annals of Pure and Applied Logic, Volume 143 (2006) no. 1-3, pp. 70-78 | DOI

[21] R. V. Chacon; T. Schwartzbauer Commuting point transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 11 (1969), pp. 277-287

[22] J. P. Conze Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Volume 25 (1972/73), pp. 11-30

[23] Samuel Coskey; Paul Ellis; Scott Schneider The conjugacy problem for the automorphism group of the random graph, Arch. Math. Logic, Volume 50 (2011) no. 1-2, pp. 215-221 | DOI

[24] Thierry de la Rue; José de Sam Lazaro Une transformation générique peut être insérée dans un flot, Ann. Inst. H. Poincaré Probab. Statist., Volume 39 (2003) no. 1, pp. 121-134 | DOI

[25] Andrés del Junco Disjointness of measure-preserving transformations, minimal self-joinings and category, Ergodic theory and dynamical systems, I (College Park, Md., 1979–80) (Progr. Math.), Volume 10, Birkhäuser Boston, Mass., 1981, pp. 81-89

[26] Christian Delhommé; Claude Laflamme; Maurice Pouzet; Norbert Sauer Divisibility of countable metric spaces, European J. Combin., Volume 28 (2007) no. 6, pp. 1746-1769 | DOI

[27] Heidi Dhal Cantor minimal systems and AF-equivalence relations, Norwegian University of Science and Technology (2008) (Ph. D. Thesis)

[28] Joseph Diestel Sequences and series in Banach spaces, Graduate Texts in Mathematics, 92, Springer-Verlag, New York, 1984, xii+261 pages

[29] T. Dobrowolski; H. Toruńczyk Separable complete ANRs admitting a group structure are Hilbert manifolds, Topology Appl., Volume 12 (1981) no. 3, pp. 229-235 | DOI

[30] Tomasz Downarowicz The Choquet simplex of invariant measures for minimal flows, Israel J. Math., Volume 74 (1991) no. 2-3, pp. 241-256 | DOI

[31] Henry A. Dye On groups of measure preserving transformations. I, Amer. J. Math., Volume 81 (1959), pp. 119-159

[32] Henry A. Dye On groups of measure preserving transformations. II, Amer. J. Math., Volume 85 (1963), pp. 551-576

[33] Edward G. Effros Transformation groups and C * -algebras, Annals of Mathematics. Second Series, Volume 81 (1965), pp. 38-55

[34] A. Fathi Le groupe des transformations de [0,1] qui préservent la mesure de Lebesgue est un groupe simple, Israel J. Math., Volume 29 (1978) no. 2-3, pp. 302-308

[35] V. P. Fonf; P. Wojtaszczyk Properties of the Holmes space, Topology Appl., Volume 155 (2008) no. 14, pp. 1627-1633 | DOI

[36] Matthew Foreman; Benjamin Weiss An anti-classification theorem for ergodic measure preserving transformations, J. Eur. Math. Soc. (JEMS), Volume 6 (2004) no. 3, pp. 277-292

[37] Roland Fraïssé Sur l’extension aux relations de quelques propriétés des ordres, Ann. Sci. Ecole Norm. Sup. (3), Volume 71 (1954), pp. 363-388

[38] Maurice Fréchet Les dimensions d’un ensemble abstrait, Math. Ann., Volume 68 (1910) no. 2, pp. 145-168 | DOI

[39] Maurice Fréchet L’Expression la Plus Generale de la “Distance” Sur Une Droite, Amer. J. Math., Volume 47 (1925) no. 1, pp. 1-10 | DOI

[40] Nathaniel Friedman; Patrick Gabriel; Jonathan King An invariant for rigid rank-1 transformations, Ergodic Theory Dynam. Systems, Volume 8 (1988) no. 1, pp. 53-72 | DOI

[41] D. Gamarnik Minimality of the group Autohomeom (C), Serdica, Volume 17 (1991) no. 4, pp. 197-201

[42] Su Gao Invariant descriptive set theory, Pure and Applied Mathematics (Boca Raton), 293, CRC Press, Boca Raton, FL, 2009, xiv+383 pages

[43] Su Gao; Alexander S. Kechris On the classification of Polish metric spaces up to isometry, Mem. Amer. Math. Soc., Volume 161 (2003) no. 766, viii+78 pages

[44] Edward D. Gaughan Topological group structures of infinite symmetric groups, Proc. Nat. Acad. Sci. U.S.A., Volume 58 (1967), pp. 907-910

[45] Thierry Giordano; Vladimir Pestov Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu, Volume 6 (2007) no. 2, pp. 279-315 | DOI

[46] Thierry Giordano; Ian F. Putnam; Christian F. Skau Topological orbit equivalence and C * -crossed products, J. Reine Angew. Math., Volume 469 (1995), pp. 51-111

[47] Thierry Giordano; Ian F. Putnam; Christian F. Skau Full groups of Cantor minimal systems, Israel J. Math., Volume 111 (1999), pp. 285-320

[48] E. Glasner; B. Tsirelson; B. Weiss The automorphism group of the Gaussian measure cannot act pointwise, Israel J. Math., Volume 148 (2005), pp. 305-329 (Probability in mathematics)

[49] Eli Glasner On minimal actions of Polish groups, Topology Appl., Volume 85 (1998) no. 1-3, pp. 119-125 8th Prague Topological Symposium on General Topology and Its Relations to Modern Analysis and Algebra (1996)

[50] Eli Glasner The group Aut (μ) is Roelcke precompact, Canad. Math. Bull., Volume 55 (2012) no. 2, pp. 297-302 | DOI

[51] Eli Glasner; Benjamin Weiss Weak orbit equivalence of Cantor minimal systems, Internat. J. Math., Volume 6 (1995) no. 4, pp. 559-579

[52] Eli Glasner; Benjamin Weiss Topological groups with Rokhlin properties, Colloq. Math., Volume 110 (2008) no. 1, pp. 51-80 | DOI

[53] G. Godefroy; N. J. Kalton Lipschitz-free Banach spaces, Studia Math., Volume 159 (2003) no. 1, pp. 121-141 (Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday) | DOI

[54] R. I. Grigorchuk; K. S. Medinets On the algebraic properties of topological full groups, Mat. Sb., Volume 205 (2014) no. 6, pp. 87-108

[55] M. Gromov; V. D. Milman A topological application of the isoperimetric inequality, Amer. J. Math., Volume 105 (1983) no. 4, pp. 843-854

[56] V. I. Gurariĭ Spaces of universal placement, isotropic spaces and a problem of Mazur on rotations of Banach spaces, Sibirsk. Mat. Ž., Volume 7 (1966), pp. 1002-1013

[57] Paul R. Halmos; H. Samelson On monothetic groups, Proc. Nat. Acad. Sci. U. S. A., Volume 28 (1942), pp. 254-258

[58] Wojchiech Herer; Jens Peter Reus Christensen On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann., Volume 213 (1975), pp. 203-210

[59] Greg Hjorth Classification and orbit equivalence relations, Mathematical Surveys and Monographs, 75, American Mathematical Society, Providence, RI, 2000, xviii+195 pages

[60] Greg Hjorth An oscillation theorem for groups of isometries, Geom. Funct. Anal., Volume 18 (2008) no. 2, pp. 489-521 | DOI

[61] Wilfrid Hodges Model theory, Encyclopedia of Mathematics and its Applications, 42, Cambridge University Press, Cambridge, 1993, xiv+772 pages | DOI

[62] Wilfrid Hodges; Ian Hodkinson; Daniel Lascar; Saharon Shelah The small index property for ω-stable ω-categorical structures and for the random graph, J. London Math. Soc. (2), Volume 48 (1993) no. 2, pp. 204-218 | DOI

[63] M. Randall Holmes The universal separable metric space of Urysohn and isometric embeddings thereof in Banach spaces, Fund. Math., Volume 140 (1992) no. 3, pp. 199-223

[64] M. Randall Holmes The Urysohn space embeds in Banach spaces in just one way, Topology Appl., Volume 155 (2008) no. 14, pp. 1479-1482 | DOI

[65] Miroslav Hušek Urysohn universal space, its development and Hausdorff’s approach, Topology Appl., Volume 155 (2008) no. 14, pp. 1493-1501 | DOI

[66] Tomás Ibarlucía; Julien Melleray Full groups of minimal homeomorphisms and Baire category methods, Ergodic Theory Dynam. Systems, Volume 36 (2016) no. 2, pp. 550-573 | DOI

[67] Adriane Kaïchouh; François Le Maître Connected Polish groups with ample generics, Bull. Lond. Math. Soc., Volume 47 (2015) no. 6, pp. 996-1009 | DOI

[68] Robert R. Kallman A uniqueness result for topological groups, Proc. Amer. Math. Soc., Volume 54 (1976), pp. 439-440

[69] Robert R. Kallman Uniqueness results for groups of measure preserving transformations, Proceedings of the American Mathematical Society, Volume 95 (1985) no. 1, pp. 87-90 | DOI

[70] Robert R. Kallman Every reasonably sized matrix group is a subgroup of S , Fundamenta Mathematicae, Volume 164 (2000) no. 1, pp. 35-40

[71] L. Kantorovitch On the translocation of masses, C. R. (Doklady) Acad. Sci. URSS (N.S.), Volume 37 (1942), pp. 199-201

[72] M. Katětov On universal metric spaces, General topology and its relations to modern analysis and algebra, VI (Prague, 1986) (Res. Exp. Math.), Volume 16, Heldermann, Berlin, 1988, pp. 323-330

[73] A. S. Kechris; V. G. Pestov; S. Todorcevic Fraïssé limits, Ramsey theory, and topological dynamics of automorphism groups, Geom. Funct. Anal., Volume 15 (2005) no. 1, pp. 106-189

[74] Alexander S. Kechris Classical descriptive set theory, Graduate Texts in Mathematics, 156, Springer-Verlag, New York, 1995, xviii+402 pages

[75] Alexander S. Kechris Actions of Polish groups and classification problems, Analysis and logic (Mons, 1997) (London Math. Soc. Lecture Note Ser.), Volume 262, Cambridge Univ. Press, Cambridge, 2002, pp. 115-187

[76] Alexander S. Kechris Global aspects of ergodic group actions, Mathematical Surveys and Monographs, 160, American Mathematical Society, Providence, RI, 2010, xii+237 pages

[77] Alexander S. Kechris; Christian Rosendal Turbulence, amalgamation and generic automorphisms of homogeneous structures, Proc. Lond. Math. Soc., Volume 94 (2007) no. 2, pp. 302-350

[78] David Kerr Sofic measure entropy via finite partitions, Groups Geom. Dyn., Volume 7 (2013) no. 3, pp. 617-632 | DOI

[79] David Kerr; Hanfeng Li; Mikaël Pichot Turbulence, representations, and trace-preserving actions, Proc. Lond. Math. Soc. (3), Volume 100 (2010) no. 2, pp. 459-484 | DOI

[80] Jonathan L. F. King The commutant is the weak closure of the powers, for rank-1 transformations, Ergodic Theory Dynam. Systems, Volume 6 (1986) no. 3, pp. 363-384 | DOI

[81] Jonathan L. F. King The generic transformation has roots of all orders, Colloq. Math., Volume 84/85 (2000) no. part 2, pp. 521-547 (Dedicated to the memory of Anzelm Iwanik)

[82] John Kittrell; Todor Tsankov Topological properties of full groups, Ergodic Theory Dynam. Systems, Volume 30 (2010) no. 2, pp. 525-545 | DOI

[83] Wiesław Kubiś; Sławomir Solecki A proof of uniqueness of the Gurariĭ space, Israel J. Math., Volume 195 (2013) no. 1, pp. 449-456 | DOI

[84] Special issue: Workshop on the Urysohn space, Topology and its Applications, 155 (2008) no. 14 (Held at Ben-Gurion University of the Negev, Beer Sheva, May 21–24, 2006)

[85] Wolfgang Lusky The Gurarij spaces are unique, Arch. Math. (Basel), Volume 27 (1976) no. 6, pp. 627-635

[86] George W. Mackey Ergodic theory and virtual groups, Math. Ann., Volume 166 (1966), pp. 187-207

[87] Maciej Malicki An example of a non non-archimedean Polish group with ample generics, Proc. Amer. Math. Soc., Volume 144 (2016) no. 8, pp. 3579-3581 | DOI

[88] Stanislaw Mazur Über konvexe mengen in linearen normiertend räumen, Studia Math., Volume 4 (1933), pp. 70-84

[89] K. Medynets Reconstruction of orbits of Cantor systems from full groups, Bull. Lond. Math. Soc., Volume 43 (2011) no. 6, pp. 1104-1110 | DOI

[90] J. Melleray; F. V. Petrov; A. M. Vershik Linearly rigid metric spaces and the embedding problem, Fund. Math., Volume 199 (2008) no. 2, pp. 177-194 | DOI

[91] J. Melleray; T. Tsankov Extremely amenable groups via continuous logic (2013) (research notes, available at http://arxiv.org/abs/1404.4590)

[92] Julien Melleray Some geometric and dynamical properties of the Urysohn space, Topology Appl., Volume 155 (2008) no. 14, pp. 1531-1560 | DOI

[93] Julien Melleray A note on Hjorth’s oscillation theorem, Journal of Symbolic Logic, Volume 75 (2010) no. 4, pp. 1359-1365

[94] Julien Melleray Topology of the isometry group of the Urysohn space, Fund. Math., Volume 207 (2010) no. 3, pp. 273-287 | DOI

[95] Julien Melleray Extensions of generic measure-preserving actions, Ann. Inst. Fourier (Grenoble), Volume 64 (2014) no. 2, pp. 607-623 http://aif.cedram.org.docelec.univ-lyon1.fr/item?id=AIF_2014__64_2_607_0

[96] Julien Melleray; Lionel Nguyen Van Thé; Todor Tsankov Polish groups with metrizable universal minimal flows, Int. Math. Res. Not. IMRN (2016) no. 5, pp. 1285-1307 | DOI

[97] Julien Melleray; Todor Tsankov Generic representations of abelian groups and extreme amenability, Israel J. Math., Volume 198 (2013) no. 1, pp. 129-167 | DOI

[98] Theodore Mitchell Topological semigroups and fixed points, Illinois J. Math., Volume 14 (1970), pp. 630-641

[99] M. G. Nadkarni Spectral theory of dynamical systems, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag, Basel, 1998, x+182 pages | DOI

[100] Edward Odell; Thomas Schlumprecht The distortion problem, Acta Math., Volume 173 (1994) no. 2, pp. 259-281 | DOI

[101] Donald S. Ornstein On the root problem in ergodic theory, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability theory (1972), pp. 347-356

[102] John C. Oxtoby Invariant measures in groups which are not locally compact, Trans. Amer. Math. Soc., Volume 60 (1946), pp. 215-237

[103] Vladimir G. Pestov On free actions, minimal flows, and a problem by Ellis, Trans. Amer. Math. Soc., Volume 350 (1998) no. 10, pp. 4149-4165

[104] Vladimir G. Pestov Ramsey-Milman phenomenon, Urysohn metric spaces, and extremely amenable groups, Israel J. Math., Volume 127 (2002), pp. 317-357

[105] Vladimir G. Pestov Dynamics of infinite-dimensional groups, University Lecture Series, 40, American Mathematical Society, Providence, RI, 2006, viii+192 pages The Ramsey-Dvoretzky-Milman phenomenon, Revised edition of Dynamics of infinite-dimensional groups and Ramsey-type phenomena [Inst. Mat. Pura. Apl. (IMPA), Rio de Janeiro, 2005; MR2164572]

[106] Vladimir G. Pestov; Vladimir V. Uspenskij Representations of residually finite groups by isometries of the Urysohn space, J. Ramanujan Math. Soc., Volume 21 (2006) no. 2, pp. 189-203

[107] B. J. Pettis On continuity and openness of homomorphisms in topological groups, Ann. of Math. (2), Volume 52 (1950), pp. 293-308

[108] Bruno Poizat Cours de théorie des modèles, Bruno Poizat, Lyon, 1985, vi+584 pages (Une introduction à la logique mathématique contemporaine. [An introduction to contemporary mathematical logic])

[109] Christian Rosendal On the non-existence of certain group topologies, Fund. Math., Volume 187 (2005) no. 3, pp. 213-228

[110] Christian Rosendal Automatic continuity of group homomorphisms, Bull. Symbolic Logic, Volume 15 (2009) no. 2, pp. 184-214 | DOI

[111] Christian Rosendal A topological version of the Bergman property, Forum Math., Volume 21 (2009) no. 2, pp. 299-332 | DOI

[112] Christian Rosendal; Sławomir Solecki Automatic continuity of homomorphisms and fixed points on metric compacta, Israel J. Math., Volume 162 (2007), pp. 349-371

[113] Marcin Sabok Automatic continuity for isometry groups (2013) (preprint available at http://www.math.uni.wroc.pl/~sabok/PRACE/automatic.rev.pdf)

[114] Konstantinos Schoretsanitis Fraïssé theory for metric structures, University of Illinois at Urbana-Champaign (2007) (Ph. D. Thesis)

[115] J. Schreier; S. Ulam Über die Permutationsgruppe der natürlichen Zachlenfolge, Studia Math., Volume 4 (1933), pp. 134-141

[116] Waclaw Sierpiński Sur un espace métrique séparable universel, Fund. Math., Volume 33 (1945), pp. 115-122

[117] Sławomir Solecki Closed subgroups generated by generic measure automorphisms, Ergodic Theory Dynam. Systems, Volume 34 (2014) no. 3, pp. 1011-1017 | DOI

[118] A. M. Stepin; A. M. Eremenko Nonuniqueness of an inclusion in a flow and the vastness of a centralizer for a generic measure-preserving transformation, Mat. Sb., Volume 195 (2004) no. 12, pp. 95-108 | DOI

[119] Katrin Tent; Martin Ziegler A course in model theory, Lecture Notes in Logic, 40, Association for Symbolic Logic, La Jolla, CA, 2012, x+248 pages

[120] Katrin Tent; Martin Ziegler The isometry group of the bounded Urysohn space is simple, Bull. Lond. Math. Soc., Volume 45 (2013) no. 5, pp. 1026-1030 | DOI

[121] Katrin Tent; Martin Ziegler On the isometry group of the Urysohn space, J. Lond. Math. Soc. (2), Volume 87 (2013) no. 1, pp. 289-303 | DOI

[122] Simon Thomas Infinite products of finite simple groups. II, J. Group Theory, Volume 2 (1999) no. 4, pp. 401-434 | DOI

[123] Todor Tsankov Automatic continuity for the unitary group, Proc. Amer. Math. Soc., Volume 141 (2013) no. 10, pp. 3673-3680 | DOI

[124] S. M. Ulam A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960, xiii+150 pages

[125] P. Urysohn Sur un espace métrique universel., C. R., Volume 180 (1925), pp. 803-806

[126] Vladimir Uspenskij On the group of isometries of the Urysohn universal metric space, Comment. Math. Univ. Carolin., Volume 31 (1990) no. 1, pp. 181-182

[127] Vladimir Uspenskij The Urysohn universal metric space is homeomorphic to a Hilbert space, Topology Appl., Volume 139 (2004) no. 1-3, pp. 145-149

[128] Jan van Mill Infinite-dimensional topology, North-Holland Mathematical Library, 43, North-Holland Publishing Co., Amsterdam, 1989, xii+401 pages

[129] Nik Weaver Lipschitz algebras, World Scientific Publishing Co. Inc., River Edge, NJ, 1999, xiv+223 pages

[130] T.-J Wei Descriptive properties of measure preserving actions and the associated unitary representations, Caltech (2005) (Ph. D. Thesis)

[131] Phillip Wesolek Conjugacy class conditions in locally compact second countable groups, Proc. Amer. Math. Soc., Volume 144 (2016) no. 1, pp. 399-409 | DOI

[132] P. B. Zatitskiĭ Canonical embeddings of compact metric spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 378 (2010) no. Teoriya Predstavlenii, Dinamicheskie Sistemy, Kombinatornye Metody. XVIII, p. 40-46, 229 | DOI

[133] Andy Zucker Topological dynamics of automorphism groups, ultrafilter combinatorics, and the generic point problem, Trans. Amer. Math. Soc., Volume 368 (2016) no. 9, pp. 6715-6740 | DOI

Cited by Sources: